A rating curve for any stormwater management pond describes how the pond operates. In Visual OTTHYMO the command ROUTE RESERVOIR is used to enter a pond rating curve and simulate routing. The rating curve is described by the Discharge (i.e. outflow) and Storage relationship. Note that the Stage or water depth variable is taken out of the input, since both Discharge and Storage are a function of Stage. The Stage-Storage and Stage-Discharge rating curves are essentially combined into one Discharge-Storage curve. An example of a Discharge-Storage Curve is as follows:

Discharge (m³/s) Storage (ha-m)
0.00 0.00
0.06 0.34
0.21 0.48
0.37 0.60
0.66 0.83
0.94 1.00

Designing a Discharge-Storage curve, at the watershed or sub-watershed planning level, involves determining each storage ordinate for every given discharge ordinate. Discharge ordinates are usually known or can readily be determined. They may represent allowable flows or release rates that when combined with other flows are the allowable flows at key locations. Storage ordinates are what the modeller is trying to calculate in order to meet the discharge targets.

For single event analysis the Discharge-Storage curve is built from the smallest to largest values, which corresponds to the smallest to largest rainfall events. For example, the above Discharge-Storage curve was based on the following design storm events.

Discharge (m³/s) Storage (ha-m) Design Storm
0.00 0.00
0.06 0.34 25 mm
0.21 0.48 2 year
0.37 0.60 5 year
0.66 0.83 25 year
0.94 1.00 100 year

When building a curve, the storms must be run from smallest to largest and the storage iterated until the pond outflow matches that of the target value in the Discharge-Storage curve. Only then can the modeller move onto the next largest storm. The proper pond sizing methodology is therefore:

  1. The modeller enters the first 2 sets of points on the curve, (0,0) and the first target flows (e.g. 0.06). The modeller guesses a storage value and then runs the model with the storm that corresponds to the target flows.
  2. The modeller checks the outflow and compares it with the target. If the outflow is too high then the modeller must increase the storage. If the outflow is too low then the modeller must decrease the storage. Note that if the storage curve has been exceeded then the outflow may be erroneous. It is better to iterate from a large storage value to the correct storage than from a small storage value.
  3. The modeller iterates step 2 until the calculates outflow matches (or is slightly less) than the target outflow. At this point the calculated storage should also match the storage in the input table.
  4. The modeller then enters the next discharge ordinate for the next largest storm, guesses a new storage and runs the model.
  5. Steps 2 and 3 are repeated until the outflow and storage are matched.
  6. Step 4 is repeated with the next largest storm until the final storm is reached.
  7. Once the last storm is iterated then the Discharge-Storage curve is complete. (e.g. when the (0.94,1.00) point is determined in the above example curve).

If the modeller is designing a SWM pond based on a real storm, or is analyzing an existing pond with design storms, then the actual discharge storage curve must be used. This can be obtained by combining the pond’s Stage-Storage curve (i.e. geometric relationship) and the Stage-Discharge curve (i.e. hydraulic relationship).

Also, a SWM pond’s actual Discharge-Storage curve must be used when creating a detail pond design, to ensure that the outflows match the targets from the design curve that was determined in the watershed or sub-watershed analysis.

When working with ponds users can choose to have an overflow hydrograph generated if the pond volume is exceeded. If the overflow option is not selected the discharge-storage curve will be extended automatically by VO.

Feedback

Thanks for your feedback.

Post your comment on this topic.

Post Comment