Training
GPU
A GPU is strongly recommended for training deep learning models. Training performance on a GPU can be up to 20x faster than on a CPU, and can shorten training time from weeks to hours.
Below is a list of recommended GPU options. In general:
- More CUDA cores leads to faster training and application times
- Architectures (later is better): 1000=Pascal, 2000=Turing, 3000=Ampere, 4000=Ada Lovelace
- The more RAM the better. More important than core count. 8GB+ is recommended for deep learning training, 12GB+ for Spotlight.
- HBM2 > GDDR6X > GDDR6 > GDDR5X > GDDR5 in terms of memory bandwidth
Basic | Mid-Range | Performance | High-End | CUDA Cores | RAM | |
GeForce GTX 1060 | x | 1280 | 6 GB GDDR5 | |||
GeForce GTX 1070 | x | 1920 | 8 GB GDDR5 | |||
GeForce RTX 2060 | x | 1920 | 6 GB GDDR6 | |||
NVIDIA RTX 2000 Ada | x | 3072 | 8 GB GDDR6 | |||
Quadro P4000 | x | 1792 | 8 GB GDDR5 | |||
GeForce GTX 1080 | x | 2560 | 8 GB GDDR5X | |||
GeForce RTX 4060 | x | 3072 | 8 GB GDDR6 | |||
GeForce RTX 4060 Ti | x | 4352 | 8 GB GDDR6 | |||
GeForce RTX 2070 | x | 2304 | 8 GB GDDR6 | |||
Quadro RTX 4000 | x | 2304 | 8 GB GDDR6 | |||
GeForce RTX 3070 | x | 5888 | 8 GB GDDR6 | |||
GeForce RTX 3080 | x | 8704 | 10 GB GDDR6X | |||
GeForce RTX 2080 Ti | x | 4352 | 11 GB GDDR6 | |||
GeForce GTX 1080 Ti | x | 3584 | 11 GB GDDR5X | |||
Titan Xp | x | 3840 | 12 GB GDDR5X | |||
GeForce RTX 4070 | x | 5888 | 12 GB GDDR6X | |||
GeForce RTX 4070 Super | x | 7168 | 12 GB GDDR6X | |||
GeForce RTX 4070 Ti | x | 7680 | 12 GB GDDR6X | |||
GeForce RTX 4070 Ti Super | x | 8448 | 12 GB GDDR6X | |||
GeForce RTX 3080 Ti | x | 10240 | 12 GB GDDR6X | |||
Titan V | x | 5120 | 12 GB HBM2 | |||
NVIDIA RTX 5000 Ada | x | 9728 | 16 GB GDDR6 | |||
NVIDIA RTX A4000 | x | 6144 | 16 GB GDDR6 | |||
Quadro RTX 5000 | x | 3072 | 16 GB GDDR6 | |||
GeForce RTX 4080 | x | 9728 | 16 GB GDDR6X | |||
GeForce RTX 4080 Super | x | 10240 | 16 GB GDDR6X | |||
Tesla V100 | x | 5120 | 16/32 GB HBM2 | |||
NVIDIA RTX 4000 Ada | x | 6144 | 20 GB GDDR6 | |||
NVIDIA RTX A4500 | x | 7168 | 20 GB GDDR6 | |||
NVIDIA RTX 4500 Ada | x | 7680 | 24 GB GDDR6 | |||
Quadro RTX 6000 | x | 4608 | 24 GB GDDR6 | |||
Titan RTX | x | 4608 | 24 GB GDDR6 | |||
GeForce RTX 4090 | x | 16384 | 24 GB GDDR6X | |||
NVIDIA RTX 6000 Ada | x | 18176 | 48 GB GDDR6 |
Applying
GPU
A GPU is also recommended for applying deep learning models. Application performance on a GPU can be up to 20x faster than on a CPU.
CPU
Since applying often takes seconds, compared to hours for training, a CPU can more reasonably be used if necessary. Please refer to the general System Requirements for more information on CPU requirements and recommendations.
Need more help with this?
Chat with an expert now ››