A Coriolis Vibratory Gyro (CVG) operates on the principal that a vibrating object (mass) tends to keep vibrating in the same plane as its support is rotated in space. This type of device is known as a Coriolis Vibratory Gyro where the plane of oscillation of a proof mass is rotated, the orthogonal response resulting from the Coriolis term in the equations of motion, is detected by a pickoff transducer.

CVGs have been produced in various forms, including the original Foucault pendulum (1851), vibrating beams, tuning forks, vibrating plates and vibrating shells. In the Foucault pendulum (non-commercial), the swing path of the pendulum rotates a fraction of the Earth’s rotation, dependent on the location latitude. Due to friction effects in the mounting fixture, some of the energy is transposed into quadrature effects, so that the pendular path becomes elliptical and theoretically, ultimately circular, negating the angular measuring capability of the system. This unwanted quadrature effect is present in the majority of CVG designs and necessitates quadrature suppression control loop electronics, signal processing and compensation.

Two CVG systems show potential [Tuning Fork Gyro (TFG) and the Hemispherical Resonator Gyro (HRG)] and these sensor developments are continuously kept under observation by the industry.

Feedback

Was this helpful?

Yes No
You indicated this topic was not helpful to you ...
Could you please leave a comment telling us why? Thank you!
Thanks for your feedback.

Post your comment on this topic.

Post Comment