The biggest source of error in MWD is usually the crustal variation. The global models such as the BGGM and HDGM can only take into account the longer wave length variations in the Earth Field and cannot be expected to allow for the localised effects of magnetic rock in the basement formations. In order to correct for these effects, the magnetic field has to be measured on site. From these local measurements, a series of corrections from a global model can be mapped out for the field so that in future years, the more permanent effect of local geology can be added to the secular effects for an up to date local field model.
IFR is a technique that measures the strength (Field Strength), direction (Declination) and vertical angle (Dip Angle) in the vicinity of the drilling activity to give the MWD contractor a more accurate reference to work to.
To accurately measure the magnetic field locally we can take direct measurements from the land, the sea or the air. On land, a non-magnetic theodolite with a fluxgate magnetometer aligned on its viewing axis, is used to measure the orientation of the magnetic field against a true north, horizontal reference from which accurate maps can be made. A proton or Caesium magnetometer is used to accurately the local field strength. In the air, only the field strength variations can be measured but if a wide enough area is measured at high resolution, the field strength data can be used to derive the effects on the compass and good estimates of the declination and dip angle can then be mapped. At sea, specialist non-magnetic equipment can be towed behind a vessel or carried on board a non-magnetic survey vessel with very accurate attitude sensors and magnetometers that output their data at high frequency and the motion effects are taken out in the processing
Post your comment on this topic.