
Developers Hub
Version 1 — Last update: Apr 20, 2022

Siemplify

Siemplify Private and Confidential

Table of Contents
1. Start Developing in Siemplify .. 4

1.1. Siemplify Integration Marketplace.. 5
1.2. Getting Started with Siemplify ... 8
1.3. My First Integration ... 13
1.4. My First Action .. 22
1.5. My First Connector .. 34

1.5.1. Developing the Connector... 37
1.5.2. Configuring the Connector .. 52
1.5.3. Testing the Connector... 54
1.5.4. Mapping & Modeling ... 58

1.6. My First Automation .. 63
1.7. Publish Your First Integration .. 76
1.8. Requirements for Publishing Integration .. 78
1.9. My First Use Case... 89

1.9.1. Creating a Use Case... 90
1.9.2. Requirements for Publishing Use Case ... 100

2. Playbook Lifecycle Management ... 101
2.1. Prerequisites ... 102
2.2. Basic Playbook Design.. 103

2.2.1. Know your Alerts .. 104
2.2.2. Analyze existing manual flow .. 106
2.2.3. Begin Playbook Design ... 107
2.2.4. Playbook Blocks – Identify Repeatable Logical Flows ... 109
2.2.5. Playbook Block Design ... 110
2.2.6. Design Tips... 111
2.2.7. Summary of Implementation.. 112

2.3. Build the Playbook Block ... 113
2.3.1. Determine Playbook block output .. 114

2.4. Build Playbook .. 115
2.5. Individual Features.. 116

2.5.1. Placeholders and the Expression Builder .. 117
2.5.2. Entities.. 122
2.5.3. Conditions... 123
2.5.4. Error Handling... 124
2.5.5. Environments .. 125
2.5.6. Insights ... 126
2.5.7. Simulate Alerts.. 127
2.5.8. How Playbooks work behind the scenes .. 128

3. Siemplify API .. 129

4. SDK References.. 130
4.1. Concepts & Tutorials ... 131

4.1.1. Actions.. 132
4.1.1.1. Action Results... 133

4.1.2. Integration Configuration & Script Parameters .. 137
4.1.2.1. External Configuration Providers .. 138

4.1.3. Custom Lists ... 142
4.1.4. Case Manipulation .. 144

4.1.4.1. Insights (General/Entity) .. 146
4.2. API.. 148

4.2.1. SiemplifyBase (SiemplifyBase.py) ... 149
4.2.1.1. fetch_timestamp ... 150
4.2.1.2. save_timestamp.. 151
4.2.1.3. fetch_and_save_timestamp .. 152
4.2.1.4. run_folder ... 153

4.2.2. Siemplify (Siemplify.py)... 154
4.2.2.1. add_Attachment.. 155
4.2.2.2. add_comment ... 156
4.2.2.3. add_entity_insight... 158
4.2.2.4. add_entity_to_case... 160
4.2.2.5. add_entities_to_custom_list.. 162

4.2.2.5.1. extract_configuration_param .. 164
4.2.2.6. any_entity_in_custom_list ... 166
4.2.2.7. assign_case.. 168
4.2.2.8. attach_workflow_to_case.. 170
4.2.2.9. change_case_priority.. 171
4.2.2.10. create_case .. 173
4.2.2.11. end ... 174
4.2.2.12. end_script ... 176
4.2.2.13. get_case_comments ... 177
4.2.2.14. get_existing_custom_list_categories... 179
4.2.2.15. is_existing_category ... 181
4.2.2.16. mark_case_as_important .. 183
4.2.2.17. raise_incident ... 184
4.2.2.18. remove_entities_from_custom_list .. 185
4.2.2.19. update_entities ... 187

4.2.3. SiemplifyAction (SiemplifyAction.py) ... 188
4.2.3.1. add_attachment .. 189
4.2.3.2. add_comment ... 191
4.2.3.3. add_entity_to_case... 192
4.2.3.4. add_alert_entities_to_custom_list ... 195
4.2.3.5. add_tag .. 197

4.2.3.6. any_alert_entities_in_custom_list ... 199
4.2.3.7. assign_case.. 201
4.2.3.8. attach_workflow_to_case.. 203
4.2.3.9. change_case_priority.. 204
4.2.3.10. change_case_stage.. 206
4.2.3.11. close_case.. 208
4.2.3.12. close_alert .. 210
4.2.3.13. create_case_insight .. 212
4.2.3.14. extract_action_param ... 214
4.2.3.15. get_alerts_ticket_ids_ from_cases_closed_since_timestamp 216
4.2.3.16. get_attachments ... 217
4.2.3.17. get_case_comments ... 218
4.2.3.18. get_configuration .. 220
4.2.3.19. get_similar_cases ... 222
4.2.3.20. load_case_data .. 224
4.2.3.21. mark_case_as_important .. 225
4.2.3.22. raise_incident ... 226
4.2.3.23. remove_alert_entities_from_custom_list ... 227
4.2.3.24. set_logs_collector ... 229
4.2.3.25. update_alerts_additional_data .. 230
4.2.3.26. _get_case ... 231
4.2.3.27. _load_current_alert ... 232
4.2.3.28. _load_target_entities .. 233
4.2.3.29. _get_custom_list_items .. 234

4.2.4. SiemplifyConnectorExecution (SiemplifyConnectors.py) ... 235
4.2.4.1. is_overflowed_alert... 236
4.2.4.2. return_package... 238
4.2.4.3. return_test_result.. 239
4.2.4.4. extract_connector_param ... 240

4.2.5. SiemplifyJob (SiemplifyJob.py) ... 242
4.2.5.1. get_configuration .. 243
4.2.5.2. extract_job_param .. 245
4.2.5.3. get_system_info ... 247

4.2.6. ScriptResult (ScriptResult.py) ... 249
4.2.6.1. add_entity_json .. 250
4.2.6.2. add_result_json .. 251
4.2.6.3. add_entity_content ... 252
4.2.6.4. add_entity_table ... 253
4.2.6.5. add_entity_attachment.. 254
4.2.6.6. add_entity_html_report ... 256
4.2.6.7. add_entity_link ... 257
4.2.6.8. add_link .. 258

4.2.6.9. add_attachment .. 259
4.2.6.10. add_content.. 260
4.2.6.11. add_html... 261
4.2.6.12. add_json... 262
4.2.6.13. add_data_table ... 264

4.2.7. SiemplifyLogger (SiemplifyLogger.py) ... 265
4.2.7.1. loadConfigFromFile .. 266
4.2.7.2. exception .. 267
4.2.7.3. error ... 269
4.2.7.4. warn ... 270
4.2.7.5. info ... 271

1. Start Developing in Siemplify

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 4 of 271

1.1. Siemplify Integration Marketplace

The Siemplify Marketplace allows you to find and install an integration of third party applications, custom
integrations that you have built in the IDE, and pre-built playbook workflows to integrate into the
organizational security products for automated IR process and optimize your Siemplify installation. The
Marketplace also contains a repository for use cases – including predefined use cases from Siemplify and
customer uploaded use cases.

Clicking on the Marketplace icon on the top right of the screen allows you to choose between
Integrations and Use Cases.

Integrations

Clicking on Integrations displays the following screen.
There are three types of integrations you can see in the Marketplace:

• Siemplify Integrations
• Integrations published by users (which have been validated by Siemplify and which will appear with

user details next to them)
• Custom Integrations (these are integrations which you have created and which are only displayed on

your Marketplace.

Integrations Explore

You can display the Integrations according to integration type (for example, show custom integrations,
published by users) or by status (for example, installed, available update).
Integrations that have not been installed yet will have a downwards arrow on the bottom right of the box.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 5 of 271

Click on this to successfully install the integration. Custom Integrations will not show the downwards arrow
as they are installed via the IDE. All integrations need to be configured and saved. For detailed information
on installing and configuring an Integration, see here.
Note that for each supported Integration in the Marketplace, there will be a link to an Integrations and
Connectors Portal page with detailed information on that specific Integration.

Integrations Configure

1. There is an option to configure each integration under a default environment by clicking on the gear
icon after you downloaded the integration.

2. Clicking on the gear icon will open the configuration window and will present all the fields related to
the integration that are required to configure for successful connection to the product.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 6 of 271

https://www.manula.com/manuals/siemplify/quick-start-guide/5.6.x/en/topic/integrations
https://integrations.siemplify.co/doc/
https://integrations.siemplify.co/doc/

3. If you would like to configure an integration under a different instance, click on the configure tab and
choose the instance you would like to configure the integration to. For more information on Siemplify
Instances, you can access the “Supporting Multiple Instance” guide.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 7 of 271

https://www.manula.com/manuals/siemplify/how-to/5.6.x/en/topic/supporting-multiple-instances

1.2. Getting Started with Siemplify

To start SOARing in the Siemplify platform, the first thing to understand is the very basic concepts which are
mentioned frequently in our documentation, and are important to know.
Be sure to read it in the given order, since each explanation relies on the prior one.

Connectors

Connectors are the ingestion point for alerts into Siemplify. Their goal is to translate raw input data, coming
from various sources, into Siemplify data. The connector gets alerts (or equivalent data) from 3rd party
tools, and forwards normalized data into the Data Processing layer. Siemplify provides out-of-the-box
connectors for today’s most popular security systems and also a Python SDK to develop new ones easily, if
needed.

Cases, Alerts and Events

Case consists of alerts which were ingested from a variety of sources by the connectors. Each Alert
contains one or more security events. Once ingested into Siemplify these events are then analyzed and
their indicators, destinations, artifacts, etc are extracted into objects in Siemplify called entities.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 8 of 271

Entities

Entities are objects that represent points of interest extracted from alerts (IOCs, artifacts etc.).
Entities allow you to automatically track their history, group alerts without human intervention and hunt for
malicious activity based on the relationship between the different entities.
In order to visually present the entities and their connection in the platform, there is a configuration process
of the ontology that involves mapping and modelling. During this process, you select the visual
representation of alerts and the Entities that should be extracted from it.
Siemplify provides basic Ontology rules for most popular SIEM products out-of-the-box.

How to create Entities in Siemplify

The process of mapping & modeling allows you to create the entities related to a specific model family and
to visualize the connections between them in a case.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 9 of 271

By mapping & modelling we can define the entity properties such as what defines if an entity is internal or
external is the configuration in the settings and if its malicious or not by the product we run in the playbook.
The mapping and modeling is more for what is source, what is time, types etc.

The mapping and modeling occurs once during the first time it is ingested and from then on the rules will run
on each case inserted that is relevant to it.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 10 of 271

Playbooks

A Playbook is an automation process that can be triggered by a predefined trigger. For example, you can
trigger a playbook for each alert that contains the product name “Mail”:This means that the playbook will
attach to each Alert ingested into Siemplify from this product.

Each playbook consists of actions that can be configured to run manually or automatically on the scope
defined for the alert entities. For example, we can configure VirusTotal – Scan URL action to run
automatically only on a specific entity type such as URL entities.

The actions take place by their defined order according to conditions- (flows) forming a tree of actions.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 11 of 271

When the final action is done, the playbook gets to a resolution for the triggering alert.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 12 of 271

1.3. My First Integration

Overview

Siemplify users can create custom integrations inside the Siemplify IDE with the same structure as Siemplify
commercial integrations. The custom integrations will appear in the Marketplace and can be configured for
different environments so they can be used in Playbooks, manual actions and remote agents. They can also
be imported and exported as with other IDE items.

In this How To we will build a custom integration for the “WHOIS XML API” product. We will start off by
creating your first integration including the registration process to the WHOIS product and the creation of the
API key.

Choose the product you would like to integrate with

1. For this example we have chosen to integrate with “WHOIS XML API” product, a free open source tool
which gets API access to domain data, including the registrant name, organization, e-mail address,
registration address, registrar information, creation date, expiration date, updated date, domain

https://www.youtube.com/embed/1u80zK-edpw?rel=0

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 13 of 271

https://www.youtube.com/embed/1u80zK-edpw?rel=0

availability, domain age and many more.

2. Lets start off by registering to WHOIS product by accessing the following url –
https://www.whoisxmlapi.com/

3. After you login you can extract your API key from the following url – https://user.whoisxmlapi.com/
products

4. Now that you have your API Key we will use this key in the integration parameters in your first custom
integration.

Creating your first custom integration in the IDE

1. From the IDE screen click the + icon in the upper left hand corner to add a new IDE item. Select the
Integration radio button and give the integration a name.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 14 of 271

https://www.whoisxmlapi.com/
https://user.whoisxmlapi.com/products
https://user.whoisxmlapi.com/products

2. The integration will be created and listed on the left hand side with an infinity icon that designates it
as a custom integration. Clicking on the Gear Icon will bring up the Integration Settings where the
Icon, Description, Python Dependencies and Integration Parameters can be defined.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 15 of 271

3. In the following screenshot, an image has been uploaded (this image will appear in the Marketplace
with the integration), an SVG icon has be added and will be presented next to the integration in the
IDE, a brief description has been added and one parameter. The parameter added is the API Key
which the “Who Is XML API” Product requires for the configuration of the integration. There is no need
for additional python libraries for this integration. In addition, you will see that we chose to run the
integration on Python 3.7. You can customize this by clicking on the dropdown and selecting to run an
integrartion on Python 2.7.

Script Dependencies are Python libraries that the custom integration will need to import.
Dependencies can be added as wheel files, tarballs, gunzip format or python files (.whl, .tar,
.gz, .py extensions are supported). Every integration runs in its own virtual environment so
feel free to add different versions of libraries even if one is already installed on the system.
For example, if there is a newer (or older!) version of requests that you would like to use

*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 16 of 271

https://cdn.manula.com/user/14758/docs/whoisxmlpng.png
https://cdn.manula.com/user/14758/docs/whoisxmlsvg_v1.svg

4. Once you create the integration you can view it in your Siemplify Marketplace (you can search the
integration name in the search bar or filter the Integration type by “Custom Integrations”) with the
image, description and parameter you defined for the integration.

5. Next, select the gear icon to open up the Configure a default Instance screen. Fill in the API Key
copied from the product page in the Who Is XML API website and click on save. If you would like to
configure the integration to a different instance (not the default environment) click on the configure tab
and configure the integration under the relevant instance.

instead of the default on the system (2.20.0 at the time of writing), download the
dependency from a reliable source such as PyPi or GitHub and add it to the Script
Dependencies for this integration. If a dependency is not installed in the virtual environment,
the integration will import it from the system installation if the dependency is installed there.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 17 of 271

https://user.whoisxmlapi.com/products

6. If you click on the test button in the configuration tab the test will fail. In order to make sure that you
have successful authentication to the WHOIS product before you move forward to creating your first
action, we will create a ping action and test the connection to the product.

7. Navigate to the IDE and click the + sign in the upper left hand corner to Add New IDE Item. Select the
Action radio button, name the Action and select the integration then click the Create button.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 18 of 271

The IDE will create a new template that has some very useful code comments and explanations. Make sure
to give this template a look over when possible.

8. Copy the following code for the ping action. The ping action uses the API Key parameter we
configured for the integration and places that API Key in the Url provided by the product for testing
purposes. We will elaborate on this in the “My First Action” tutorial.

from SiemplifyAction import SiemplifyAction
from SiemplifyUtils import output_handler
import requests

INTEGRATION_NAME = "My first Integration - Whois XML API"

SCRIPT_NAME = "Whois XML API Ping"

@output_handler
def main():

siemplify = SiemplifyAction()
siemplify.script_name = SCRIPT_NAME

api_key = siemplify.extract_configuration_param(provider_name=INTEGRATION_NAM
E,

param_name="API Key")

url = "https://www.whoisxmlapi.com/whoisserver/WhoisService?apiKey={api_key}&
domainName=google.com".format(api_key=api_key)

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 19 of 271

res = requests.get(url)
res.raise_for_status()

if "ApiKey authenticate failed" in res.content.decode("utf-8"):
raise Exception("Error, bad credentials")

siemplify.end("Successful Connection", True)

if __name__ == "__main__":
main()

9. In order to test the connection to the product enable the toggle above the action and click on Save.

10. Navigate to the Marketplace, click on the gear icon and make sure that the integration is configured
and saved. Test the integration by clicking on the test button. If the connection is successful a green
V will be presented next to the test. If the connection is not successful an X will be presented next to
the test with the associated error.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 20 of 271

Once you have finished the authentication step you can now create your first custom action in your custom
integration.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 21 of 271

1.4. My First Action

Overview

In My First Integration, we created a custom integration, defined the parameters related to the integration
and created a Ping Action to test connection to the product. In this tutorial we will create two Actions for the
integration, one will get the Domain details and present a Json result and the other is Enrich Entities action.
Knowledge of Python and object oriented programming is necessary for this tutorial. Additionally, exploring
the SDK modules themselves is highly recommended.

Creating a Custom Action

• Navigate to the IDE and click the + sign in the upper left hand corner to Add New IDE Item. Select the
Action radio button, name the Action “Get Domain Details” and select the integration then click the
Create button.

The IDE will create a new template that has some very useful code comments and explanations. Make sure
to give this template a look over when possible.

Action Parameters

In order to configure the relevant parameters for this action, review the input parameters in the WHOIS XML
API documentation. For the Get Domain Details we will need to configure 2 parameters for the action –
Check Availability & Domain Name.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 22 of 271

https://whois.whoisxmlapi.com/documentation/making-requests
https://whois.whoisxmlapi.com/documentation/making-requests

1. To configure the parameters click on the right + icon in the right part of the IDE module.

2. Create the first parameter and fill in the fields as presented in the screenshot for the “Check
availability” parameter and click on the save button. This parameter indicates if the domain is
available or not and the result will be used in the automation we create.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 23 of 271

3. Create the second parameter and fill in the fields as presented in the screenshot for the “Domain
Name” parameter and click on the save button. This field will be used to insert the domain name we
would like the action to check its details.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 24 of 271

Edit the Get Domain Details Action

1. Copy the below code created for the Get Domain Details, paste it in the IDE and follow the
explanation of the action.

from SiemplifyAction import SiemplifyAction
from SiemplifyUtils import output_handler
import requests

Example Consts:
INTEGRATION_NAME = "My first Integration - Whois XML API"

SCRIPT_NAME = "WHOIS XML API GetDomainDetails"

@output_handler
def main():

siemplify = SiemplifyAction()
siemplify.script_name = SCRIPT_NAME
siemplify.LOGGER.info("================= Main - Param Init

=================")

api_key = siemplify.extract_configuration_param(provider_name=INTEGRATION_NAM
E,

param_name="API Key")

url = f"https://www.whoisxmlapi.com/whoisserver/WhoisService?apiKey={api_ke
y}&outputFormat=json"

domain = siemplify.extract_action_param(param_name="Domain Name", print_valu
e=True)

availabilty_check = siemplify.extract_action_param(param_name="Check availabi
lity", is_mandatory=False, print_value=True)

Add domain to scan
url = f"{url}&domainName={domain}"

Determine availabilty check
if availabilty_check.lower() == 'true':

availabilty_check_qs = 1
else:

availabilty_check_qs = 0

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 25 of 271

url = f"{url}&da={availabilty_check_qs}"

response = requests.get(url)
response.raise_for_status()

Add a Json result that can be used in the next steps of the playbook.
siemplify.result.add_result_json(response.json())
Add the Json to the action result presented in the context details.
siemplify.result.add_json("WhoisDetails", response.json())

msg = f"Fetched data for {domain}"

siemplify.end(msg, None)

if __name__ == "__main__":
main()

There are two things that must happen in a Siemplify Action. Firstly, an object must be instantiated from the
SiemplifyAction class that extracts the Siemplify SDK.

from SiemplifyAction import SiemplifyAction
from SiemplifyUtils import output_handler
import requests

The second is that the object must utilize the class’s end method to return an output message and a result
value.

siemplify.end(msg, None)

2. Extract integration & action params – as you can see in the code copied into the action, from line 17
to 24 we use the siemplify.extract_configuration_param function which extracts the
parameters configured for the integration (API Key) and siemplify.extract_action_param
function which extracts each of the parameters we configured for the action (Domain Name & Check
availability).

api_key = siemplify.extract_configuration_param(provider_name=INTEGRATIO
N_NAME,

param_name="API Key")

url = f"https://www.whoisxmlapi.com/whoisserver/WhoisService?apiKey={api_ke

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 26 of 271

y}&outputFormat=json"

domain = siemplify.extract_action_param(param_name="Domain Name", print_valu
e=True)

availabilty_check = siemplify.extract_action_param(param_name="Check availabi
lity", is_mandatory=False, print_value=True)

3. Once we have extracted the parameters configured for the integration and Action we will then build
the URL according to the boolean availability_check. Once the url is ready, we will create a
request to the whois site, parse the answer and will add it to the result of the action. We then add the
Json result and define the output message that will be presented in the action result.

Add domain to scan
url = f"{url}&domainName={domain}"

Determine availabilty check
if availabilty_check.lower() == 'true':

availabilty_check_qs = 1
else:

availabilty_check_qs = 0

url = f"{url}&da={availabilty_check_qs}"

response = requests.get(url)
response.raise_for_status()

Add a Json result that can be used in the next steps of the playbook.
siemplify.result.add_result_json(response.json())
Add the Json to the action result presented in the context details.
siemplify.result.add_json("WhoisDetails", response.json())

msg = f"Fetched data for {domain}"

siemplify.end(msg, None)

if __name__ == "__main__":
main()

Adding a JSON Result to the Action

As part of the Get Domain Details action we will also add a Json example to the action using the “Include

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 27 of 271

JSON Result” toggle. We will be utilizing the Json example in the playbook designer in the “My First
Automation” tutorial to extract a specific field in the Json.

1. In order to insert a JSON example copy the JSON from the Example in the WHOIS site as presented
in the following link.

2. Enable the toggle in the “Details” tab in the IDE that will enable the JSON icon in the top part of the
IDE. Click on the JSON icon and import the JSON from the example in the previous link.

Testing the Action

Once we have finished creating the action we will test the action on a test case.

1. Navigate to the “Testing” tab and choose the Scope, Test Case and Integration Instance.

2. Once all the fields are filled click on the play icon in the top part of the IDE and view the result of the
action in the Testing tab. You can also view the Debug output once that test has been completed by
navigating to the “Debug output” tab. Please note that the debug shows prints and logs.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 28 of 271

https://cdn.manula.com/user/14758/docs/json-example.json

If you don’t have any Test Cases in your environment, navigate to the cases module and click on simulate
alert in one of your cases. This action will create a test case that will be presented with a “Test” label in your
case queue. Once you have finished creating the test case navigate back to the IDE and choose the test
case from the list.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 29 of 271

Creating an Enrichment action

1. Part of the automation we will create in the next how to “My First Automation” will include an
enrichment action that will enrich the entities and add the enrichment data to the different entities
which can be viewed in the Entity Explorer.

2. Start off by creating a new action in the IDE and provide it the name “Enrich Entities”. Copy the below
code:

from SiemplifyAction import SiemplifyAction
from SiemplifyUtils import output_handler
from SiemplifyDataModel import EntityTypes

import requests

Example Consts:
INTEGRATION_NAME = "My first Integration - Whois XML API"

SCRIPT_NAME = "WHOIS XML API EnrichEntities"

@output_handler
def main():

siemplify = SiemplifyAction()
siemplify.script_name = SCRIPT_NAME
siemplify.LOGGER.info("================= Main - Param Init

=================")

api_key = siemplify.extract_configuration_param(provider_name=INTEGRATION_NAM
E,

param_name="API Key")

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 30 of 271

url = f"https://www.whoisxmlapi.com/whoisserver/WhoisService?apiKey={api_ke
y}&outputFormat=json"

siemplify.LOGGER.info("----------------- Main - Started -----------------")

output_message = "output message :" # human readable message, showed in UI a
s the action result

successfull_entities = [] # In case this actions contains entity based logi
c, collect successfull entity.identifiers

for entity in siemplify.target_entities:
siemplify.LOGGER.info(f"proccessing entity {entity.identifier}")
if (entity.entity_type == EntityTypes.HOSTNAME and not entity.is_interna

l) or entity.entity_type == EntityTypes.URL:
entity_to_scan = entity.identifier

scan_url = f"{url}&domainName={entity_to_scan}"

response = requests.get(scan_url)
response.raise_for_status()
register_details = response.json().get("WhoisRecord", {}).get("regist

rant", {})
if register_details:

entity.additional_properties.update(register_details)
successfull_entities.append(entity)

if successfull_entities:
output_message += "\n Successfully processed entities:\n {}".forma

t("\n ".join([x.identifier for x in successfull_entities]))
siemplify.update_entities(successfull_entities) # This is the actual enri

chment (this function sends the data back to the server)
else:

output_message += "\n No entities where processed."

result_value = len(successfull_entities)

siemplify.LOGGER.info("----------------- Main - Finished -----------------")
siemplify.end(output_message, result_value)

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 31 of 271

if __name__ == "__main__":
main()

3. As seen in the code and done previously in the “Get Domain Details” action, we extract the
parameters of the integration – the WHOIS XML API Key.

4. We are using siemplify.target_entities in the action which returns a list of all the target
entities. We then define the Entity type we would like the action to run on, in this case a non internal
Hostname or urls.

for entity in siemplify.target_entities:
siemplify.LOGGER.info(f"proccessing entity {entity.identifier}")
if (entity.entity_type == EntityTypes.HOSTNAME and not entity.is_interna

l) or entity.entity_type == EntityTypes.URL:
entity_to_scan = entity.identifier

5. We then scan the domain, define the enrichment step of the action and the output message. This
action runs on an Entity scope and therefor does not require to configure specific parameters, this is
already embedded in the code.

scan_url = f"{url}&domainName={entity_to_scan}"

response = requests.get(scan_url)
response.raise_for_status()
register_details = response.json().get("WhoisRecord", {}).get("regist

rant", {})
if register_details:

entity.additional_properties.update(register_details)
successfull_entities.append(entity)

if successfull_entities:
output_message += "\n Successfully processed entities:\n {}".forma

t("\n ".join([x.identifier for x in successfull_entities]))
siemplify.update_entities(successfull_entities) # This is the actual enri

chment (this function sends the data back to the server)
else:

output_message += "\n No entities where processed."

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 32 of 271

result_value = len(successfull_entities)

6. Enable the action and save it. You now have a custom Integration that you created that has 3 custom
actions – a ping action that enabled us to test the connection to the WHOIS XML API product, a Get
Domain Details action that extracts data regarding the domain presenting a Json result and a final
action that enriches the entities and adds additional data to the target entities that are presented in
the Entity Explorer module. Everything is now ready for you to create your first automation using the
actions you customized.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 33 of 271

1.5. My First Connector

What are Connectors?

The connectors are the entry point for alerts into Siemplify. Their job is to translate raw input data from
multiple sources into Siemplify data. The connectors get alerts (or equivalent data – e.g. alarms, correlation
events, etc) from 3rd party tools sent to the Data Processing layer, to be ingested as Siemplify alerts and
events.

Overview

In this guide, we will demonstrate how to develop an email connector in Siemplify IDE in order to ingest raw
data from an email source (Gmail) and translates it into Siemplify data in order to create cases in the
Siemplify platform.
The connector will scan each email message body in order to extract URLs from the email. In the next step
we will check if these URLs are malicious using the product we have integrated with in My First Action –
Who Is XML.

https://www.youtube.com/embed/Fu8qdQDyUyo?rel=0

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 34 of 271

https://www.youtube.com/embed/Fu8qdQDyUyo?rel=0

Prerequisite steps

To allow the connector to connect to your email inbox there are a few steps that need to be done.

1. Let’s start off by creating a new gmail account or using one that you already have for testing
purposes.

2. “2-step verification”, is one of the security adjustments to allow Siemplify platform to access the email
inbox securely.

First option – turn off the “2-step verification” under “Signing in to google”, and turn on the “Less secure
app access”.

Second option – in order to leave your 2-step verification on, you can create an App Password that gives
the Siemplify platform permission to access your Google Account. App Passwords can only be used with
accounts that have 2-step verification turned on.

Click on the App passwords icon and then fill in the relevant fields:

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 35 of 271

“Select app”: select “Other (Custom name)” option and add URL associated with your Siemplify platform
(DNS).

The next step is to create the email connector in the IDE. Continue to the Developing the Connector section.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 36 of 271

1.5.1. Developing the Connector

1. From the IDE screen click the + icon in the upper left hand corner to add a new IDE item. Select the
Integration radio button and give the integration the name: “Email Connector”.

2. The integration will be created and listed on the left hand side with a default icon. Clicking on the
Gear Icon will bring up the Integration Settings where the Icon, Description, Python Dependencies
and Integration Parameters can be defined.

3. Next, click the + icon and add a new IDE item. Select the Connector radio button and give the
connector the name: “My Email Connector”. Next, select the integration “Email Connector” to
associate the connector with the integration.

4. After creating the connector, set the following connector parameters:

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 37 of 271

Parameter
Name

Description Mandatory Type Default Value Explanation

Username
IMAP User
name

Yes String email@gmail.com
The email address from which the
connector will pull the emails into
Siemplify platform

Password
IMAP
Password

Yes Password

The password associated with the
email address from which the
connector will ingest the emails into
Siemplify platform

IMAP Port
Imap port. e.g.
993

Yes Int 993

The Internet Message Access
Protocol (IMAP) is a mail protocol
used for accessing emails on a
remote web server from a local
client.

IMAP
Server
Address

e.g.
imap.gmail.com

Yes String imap.google.com

The incoming mail server for an
IMAP account can also be called
the IMAP server. In this example,
the email provider is google.com,
and the incoming mail server is
imap.google.com.

Folder to
check for
emails

Pulls emails
only from the
specified folder

No String Inbox
The folder from which the emails
will be retrieved, For example: Inbox

5. Next, in the upper right fill out the fields:

• “Product Field Name” = device_product, determines which value from the raw fields would be
assigned to the product name of the alert. You can find the related field in the code in line 57 which

Note: in this example the connector pulls only the unread messages and after processing
each email message it will be automatically marked as read in the email box.*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 38 of 271

was defined as “Mail” (product).
event["device_product"] = PRODUCT #The PRODUCT constant is "Mail"

• “Event Field Name” = event_name, determines which value from the raw fields would be assigned to
the event type field. You can find the related field in the code in line 56 which was defined as
“Suspicious email”.
event["event_name"] = "Suspicious email"

Edit the Email Connector

1. Copy the code below created for the “My Email Connector”, paste it in the IDE and follow the
instructions.

from SiemplifyConnectors import SiemplifyConnectorExecution
from SiemplifyConnectorsDataModel import AlertInfo
from SiemplifyUtils import output_handler, convert_datetime_to_unix_time, conver
t_string_to_datetime
import email, imaplib, sys, re

CONSTANTS
CONNECTOR_NAME = "Mail"
VENDOR = "Mail"
PRODUCT = "Mail"
DEFAULT_PRIORITY = 60 # Default is Medium
RULE_GENERATOR_EXAMPLE = "Mail"
DEFAULT_FOLDER_TO_CHECK_INBOX = "inbox"
DEFAULT_MESSAGES_TO_READ_UNSEEN = "UNSEEN"
URLS_REGEX = r"(?i)\b(?:http(?:s)?:\/\/)?(?:www\.)?[a-zA-Z0-9:%_\+~#=][a-zA-Z
0-9:%\._\+~#=]{1,255}\.[a-z]{2,6}\b(?:[-a-zA-Z0-9@:%_\+.~#?&//=]*)"

def create_alert(siemplify, alert_id, email_message_data, datetime_in_unix_time,
created_event):

"""
Returns an alert which is one event that contains one unread email message
"""
siemplify.LOGGER.info(f"-------------- Started processing Alert {alert_id}")
create_event = None
alert_info = AlertInfo()

Initializes the alert_info Characteristics Fields
alert_info.display_id = f"{alert_id}" # Each alert needs to have a unique i

d, otherwise it won't create a case with the same alert id.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 39 of 271

alert_info.ticket_id = f"{alert_id}" # In default, ticket_id = display_id. Ho
wever, if for some reason the external alert id is different from the display_i
d, you can save the original external alert id in the "ticket_id" field.

alert_info.name = email_message_data['Subject']
alert_info.rule_generator = RULE_GENERATOR_EXAMPLE # The name of the siem rul

e which causes the creation of the alert.
alert_info.start_time = datetime_in_unix_time # Time should be saved in UnixT

ime. You may use SiemplifyUtils.convert_datetime_to_unix_time, or SiemplifyUtil
s.convert_string_to_datetime

alert_info.end_time = datetime_in_unix_time # Time should be saved in UnixTim
e. You may use SiemplifyUtils.convert_datetime_to_unix_time, or SiemplifyUtils.co
nvert_string_to_datetime

alert_info.priority = 60 # Informative = -1,Low = 40,Medium = 60,High = 80,C
ritical = 100.

alert_info.device_vendor = VENDOR # The field will be fetched from the Origin
al Alert. If you build this alert manually, state the source vendor of the data.
(ie: Microsoft, Mcafee)

alert_info.device_product = PRODUCT # The field will be fetched from the Orig
inal Alert. If you build this alert manually, state the source product of the dat
a. (ie: ActiveDirectory, AntiVirus)

----------------------------- Alert Fields initialization END
-----------------------------#

siemplify.LOGGER.info(f"---------- Events creating started for alert {aler
t_id}")

try:
if created_event is not None:

alert_info.events.append(created_event)
siemplify.LOGGER.info(f"Added Event {alert_id} to Alert {alert_id}")

Raise an exception if failed to process the event
except Exception as e:

siemplify.LOGGER.error(f"Failed to process event {alert_id}")
siemplify.LOGGER.exception(e)

return alert_info

def create_event(siemplify, alert_id, email_message_data, all_found_url_in_email
s_body_list, datetime_in_unix_time):

"""
Returns the digested data of a single unread email
"""
siemplify.LOGGER.info(f"--- Started processing Event: alert_id: {alert_id}

| event_id: {alert_id}")
event = {}
event["StartTime"] = datetime_in_unix_time # Time should be saved in UnixTim

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 40 of 271

e. You may use SiemplifyUtils.convert_datetime_to_unix_time, or SiemplifyUtils.co
nvert_string_to_datetime

event["EndTime"] = datetime_in_unix_time # Time should be saved in UnixTime.
You may use SiemplifyUtils.convert_datetime_to_unix_time, or SiemplifyUtils.conve
rt_string_to_datetime

event["event_name"] = "Suspicious email"
event["device_product"] = PRODUCT # ie: "device_product" is the field name th

at describes the product the event originated from.

event["Subject"] = email_message_data["Subject"]
event["SourceUserName"] = email_message_data["From"]
event["DestinationUserName"] = email_message_data["To"]
event["found_url"] = ",".join(all_found_url_in_emails_body_list)

siemplify.LOGGER.info(f"--- Finished processing Event: alert_id: {alert_id}
| event_id: {alert_id}")

return event

def find_url_in_email_message_body(siemplify, email_messages_data_list):
"""
Search for a url in the email body,
"""
all_found_url_in_emails_body_list = []
for message in email_messages_data_list:

for part in message.walk():
if part.get_content_maintype() == 'text\plain':

continue
email_message_body = part.get_payload()
all_found_urls = re.findall(URLS_REGEX, str(email_message_body))
for url in all_found_urls:

if url not in all_found_url_in_emails_body_list:
all_found_url_in_emails_body_list.append(url)

siemplify.LOGGER.info(f"The URL found : {all_found_url_in_emails_body_list}")

return all_found_url_in_emails_body_list

def get_email_messages_data(imap_host, imap_port, username, password, folder_to_c
heck):

"""
Returns all unread email messages
"""
email_messages_data_list = []

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 41 of 271

Login to email using 'imap' module
mail = imaplib.IMAP4_SSL(imap_host, imap_port)
mail.login(username, password)
Determining the default email folder to pull emails from - 'inbox'
if folder_to_check is None:

folder_to_check = DEFAULT_FOLDER_TO_CHECK_INBOX
Selecting the email folder to pull the data from
mail.select(folder_to_check)
Storing the email message data
result, data = mail.search(None, DEFAULT_MESSAGES_TO_READ_UNSEEN)
If there are several emails collected in the cycle it will split each emai

l message into a separate item in the list chosen_mailbox_items_list
if len(data) > 0:

chosen_mailbox_items_list = data[0].split()
Iterating each email message and appending to emails_messages_data_list
for item in chosen_mailbox_items_list:

typ, email_data = mail.fetch(item, '(RFC822)')
Decoding from binary string to string
raw_email = email_data[0][1].decode("utf-8")
Turning the email data into an email object
email_message = email.message_from_string(raw_email)
Appending the email message data to email_messages_data_list
email_messages_data_list.append(email_message)

return email_messages_data_list

@output_handler
def main(is_test_run):

alerts = [] # The main output of each connector run that contains the alerts
data

siemplify = SiemplifyConnectorExecution() # Siemplify main SDK wrapper
siemplify.script_name = CONNECTOR_NAME

#In case of running a test
if (is_test_run):

siemplify.LOGGER.info("This is an \"IDE Play Button\"\\\"Run Connector on
ce\" test run")

#Extracting the connector's Params
username = siemplify.extract_connector_param(param_name="Username")
password = siemplify.extract_connector_param(param_name="Password")
imap_host = siemplify.extract_connector_param(param_name="IMAP Server Addres

s")
imap_port = siemplify.extract_connector_param(param_name="IMAP Port")
folder_to_check = siemplify.extract_connector_param(param_name="Folder to che

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 42 of 271

ck for emails")

#Getting the digested email message data
email_messages_data_list = get_email_messages_data(imap_host, imap_port, user

name, password, folder_to_check)

#If the email_messages_data_list is not empty
if len(email_messages_data_list) > 0:

for message in email_messages_data_list:
Converting the email message datetime from string to unix time by S

iemplifyUtils functions:
datetime_email_message = message['Date']
string_to_datetime = convert_string_to_datetime(datetime_email_messag

e)
datetime_in_unix_time = convert_datetime_to_unix_time(string_to_datet

ime)

found_urls_in_email_body = find_url_in_email_message_body(siemplify,
email_messages_data_list)

Getting the unique id of each email message and removing the suffi
x '@mail.gmail.com' from the Message-ID, Each alert id can be ingested to the sys
tem only once.

alert_id = message['Message-ID'].replace('@mail.gmail.com','')

Creating the event by calling create_event() function
created_event = create_event(siemplify, alert_id, message, found_url

s_in_email_body, datetime_in_unix_time)
Creating the alert by calling create_alert() function
created_alert = create_alert(siemplify, alert_id, message, datetime_i

n_unix_time, created_event)

Checking that the created_alert is not None
if created_alert is not None:

alerts.append(created_alert)
siemplify.LOGGER.info(f"Added Alert {alert_id} to package result

s")

If the inbox for the user has no unread emails.
else:

siemplify.LOGGER.info(f"The inbox for user {username} has no unread emai
ls")

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 43 of 271

Returning all the created alerts to the cases module in Siemplify
siemplify.return_package(alerts)

if __name__ == "__main__":
Connectors run in iterations. The interval is configurable from the Connect

orsScreen UI.
is_test_run = not (len(sys.argv) < 2 or sys.argv[1] == 'True')
main(is_test_run)

2. Now that we have copied the connectors code we will go over the relevant modules that need to be
imported and continue with the main function. Afterwards we will elaborate on each method that was
called from the main function.

The relevant imports

A Python module has a set of functions, classes or variables defined and implemented. In order to achieve
all the functions below we imported those modules into our script.

from SiemplifyConnectors import SiemplifyConnectorExecution # This module is resp
onsible for executing the connector
from SiemplifyConnectorsDataModel import AlertInfo #The data model that contains
the alert info class
from SiemplifyUtils import output_handler, convert_datetime_to_unix_time, conver
t_string_to_datetime #The functions that convert time
import email, imaplib, sys, re

Main function

The main function is the start point of the script. The Python interpreter executes the code sequentially and
calls each method that is part of the code.

1. Extract connector params – as you can see in the code copied into the IDE, we use the siemplif
y.extract_connector_param function which extracts each of the parameters we configured for
the connector (username, password, imap_host, imap_port, folder_to_check).

#Extracting the connector's Params
username = siemplify.extract_connector_param(param_name="Username")
password = siemplify.extract_connector_param(param_name="Password")
imap_host = siemplify.extract_connector_param(param_name="IMAP Server Address")
imap_port = siemplify.extract_connector_param(param_name="IMAP Port")
folder_to_check = siemplify.extract_connector_param(param_name="Folder to check f

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 44 of 271

or emails")

2. We will use the function get_email_messages_data(imap_host, imap_port, username, p
assword, folder_to_check) in order to get all the information collected from the unread emails
(We will elaborate on this function in another step).

#Getting the digested email message data
email_messages_data_list = get_email_messages_data(imap_host, imap_port, usernam
e, password, folder_to_check)

3. After we have received all the information of the email we will check that the information has indeed
been collected, and then we will perform a number of actions on each email:

#If the email_messages_data_list is not empty
if len(email_messages_data_list) > 0:

for message in email_messages_data_list:
Converting the email message datetime from string to unix time by Siemp

lifyUtils functions

• This code extracts the message date by datetime_email_message = message['Date'] and
then converts this date time to unix time using Siemplify functions:

string_to_datetime = convert_string_to_datetime(datetime_email_message)
datetime_in_unix_time = convert_datetime_to_unix_time(string_to_datetime)

• We then search for URLs (if the email has a url we will use other products in our playbook to check if
the URL is malicious) in the email message body by using the function below find_url_in_emai
l_message_body(siemplify, email_messages_data_list)
(We will elaborate on this function in another step).

found_urls_in_email_body = find_url_in_email_message_body(siemplify, email_messag
es_data_list)

• Extract the unique ID of each email message, and assign it to the alert_id variable.

Getting the unique id of each email message and removing the suffix '@mail.gmai
l.com' from the Message-ID, Each alert id can be ingested to the system only onc
e.
alert_id = message['Message-ID'].replace('@mail.gmail.com','').

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 45 of 271

• After we extracted all the necessary information for ingesting the alert into the Siemplify platform, we
can create the alert and the event (We will elaborate on these functions in another step):

Creating the event by calling create_event() function
created_event = create_event(siemplify, alert_id, message, found_urls_in_email_bo
dy, datetime_in_unix_time)
Creating the alert by calling create_alert() function
created_alert = create_alert(siemplify, alert_id, message, datetime_in_unix_tim
e, created_event)

• Next we will validate the created alert and the created event. After validating we will add the alert to
the alert list.

Checking that the created_alert is not None
if created_alert is not None:

alerts.append(created_alert)
siemplify.LOGGER.info(f"Added Alert {alert_id} to package results")

4. In a situation that the inbox for the given user has no unread emails we have added the following
code:

else:
siemplify.LOGGER.info(f"The inbox for user {username} has no unread emails")

5. At the end we will return the alerts list to the system and each alert will be presented as a case in the
case queue.

Returning all the created alerts to the cases module in Siemplify
siemplify.return_package(alerts)

6. This step is responsible for running the Main function within the times we set in the Connector
configuration:

if __name__ == "__main__":
Connectors run in iterations. The interval is configurable from the Connect

orsScreen UI.
is_test_run = not (len(sys.argv) < 2 or sys.argv[1] == 'True')
main(is_test_run)

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 46 of 271

Getting the unread email message

This function is responsible for connecting to the email by the “Imap” and “Email” models and retrieving the
information of the email message. Finally, the function returns a list containing all the information of all the
unread email messages.

1. From the main class we will use the function get_email_messages_data(imap_host, imap_po
rt, username, password, folder_to_check).

def get_email_messages_data(imap_host, imap_port, username, password, folder_to_c
heck):

"""
Returns all unread email messages
"""
email_messages_data_list = []

2. After that we will connect to the email by using the ‘imap’ module.

Login to email using 'imap' module
mail = imaplib.IMAP4_SSL(imap_host, imap_port)
mail.login(username, password)

3. We will then determine the folder in the email to check for unread messages. In this example we will
extract emails from the inbox’ folder (DEFAULT_FOLDER_TO_CHECK_INBOX = "inbox").

Determining the default email folder to pull emails from - 'inbox'
if folder_to_check is None:

folder_to_check = DEFAULT_FOLDER_TO_CHECK_INBOX
Selecting the email folder to pull the data from
mail.select(folder_to_check)

4. We then collect all the unread messages(DEFAULT_MESSAGES_TO_READ_UNSEEN = “UNSEEN”,
and then convert this data to a list.

Storing the email message data
result, data = mail.search(None, DEFAULT_MESSAGES_TO_READ_UNSEEN)
If there are several emails collected in the cycle it will split each emai

l message into a separate item in the list chosen_mailbox_items_list
if len(data) > 0:

chosen_mailbox_items_list = data[0].split()
Iterating each email message and appending to emails_messages_data_list

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 47 of 271

for item in chosen_mailbox_items_list:
typ, email_data = mail.fetch(item, '(RFC822)')
Decoding from binary string to string
raw_email = email_data[0][1].decode("utf-8")
Turning the email data into an email object
email_message = email.message_from_string(raw_email)
Appending the email message data to email_messages_data_list
email_messages_data_list.append(email_message)

return email_messages_data_list

Creating the event

This function is responsible for creating the event by associating each email message component to the
event fields respectively.

1. From the main class we will create the event by using the function: create_event(siemplify, al
ert_id, email_message_data, all_found_url_in_emails_body_list, datetime_in_u
nix_time)

def create_event(siemplify, alert_id, email_message_data, all_found_url_in_email
s_body_list, datetime_in_unix_time):

"""
Returns the digested data of a single unread email
"""
siemplify.LOGGER.info(f"--- Started processing Event: alert_id: {alert_id}

| event_id: {alert_id}")

2. We will create a dictionary with the event fields while the mandatory fields are: event["StartTim
e"], event["EndTime"], event["event_name"] and event["device_product"].

event = {}
event["StartTime"] = datetime_in_unix_time # Time should be saved in UnixTime. Yo
u may use SiemplifyUtils.convert_datetime_to_unix_time, or SiemplifyUtils.conver
t_string_to_datetime
event["EndTime"] = datetime_in_unix_time # Time should be saved in UnixTime. You
may use SiemplifyUtils.convert_datetime_to_unix_time, or SiemplifyUtils.convert_s
tring_to_datetime
event["event_name"] = "Suspicious email"
event["device_product"] = PRODUCT # ie: "device_product" is the field name that d
escribes the product the event originated from.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 48 of 271

event["Subject"] = email_message_data["Subject"]
event["SourceUserName"] = email_message_data["From"]
event["DestinationUserName"] = email_message_data["To"]
event["found_url"] = ",".join(all_found_url_in_emails_body_list)

siemplify.LOGGER.info(f"--- Finished processing Event: alert_id: {alert_id} | eve
nt_id: {alert_id}")
return event

3. Each alert contains one or more events. In this example we will demonstrate an alert that contains
only one event which is a single email message.
Therefore, after creating the event we will create the alert that contains all the event information.

Creating the alert info and initializing the alert info characteristics fields

This function is responsible for creating the alert, each alert contains one or more events within it. In our
case each alert contains one event which is basically one email message.

1. From the main class we will create the alert by using the function: create_alert(siemplify, al
ert_id, email_message_data, datetime_in_unix_time, created_event).

def create_alert(siemplify, alert_id, email_message_data, datetime_in_unix_time,
created_event):

"""
Returns an alert which is one event that contains one unread email message
"""
siemplify.LOGGER.info(f"-------------- Started processing Alert {alert_id}")
create_event = None

2. Creating the alert info instance and initializing the alert info characteristics fields:

Initializes the alert_info Characteristics Fields
alert_info.display_id = f"{alert_id}" # Each alert needs to have a unique id, oth
erwise it won't create a case with the same alert id.
alert_info.ticket_id = f"{alert_id}" # In default, ticket_id = display_id. Howeve
r, if for some reason the external alert id is different from the display_id, yo
u can save the original external alert id in the "ticket_id" field.
alert_info.name = email_message_data['Subject']
alert_info.rule_generator = RULE_GENERATOR_EXAMPLE # The name of the siem rule wh
ich causes the creation of the alert.
alert_info.start_time = datetime_in_unix_time # Time should be saved in UnixTim

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 49 of 271

e. You may use SiemplifyUtils.convert_datetime_to_unix_time, or SiemplifyUtils.co
nvert_string_to_datetime
alert_info.end_time = datetime_in_unix_time # Time should be saved in UnixTime. Y
ou may use SiemplifyUtils.convert_datetime_to_unix_time, or SiemplifyUtils.conver
t_string_to_datetime
alert_info.priority = 60 # Informative = -1,Low = 40,Medium = 60,High = 80,Criti
cal = 100.
alert_info.device_vendor = VENDOR # The field will be fetched from the Original A
lert. If you build this alert manually, state the source vendor of the data. (i
e: Microsoft, Mcafee)
alert_info.device_product = PRODUCT # The field will be fetched from the Origina
l Alert. If you build this alert manually, state the source product of the data.
(ie: ActiveDirectory, AntiVirus)
----------------------------- Alert Fields initialization END
-----------------------------#

3. After creating the alert info we will validate the created event and then append the event information
to the alert info characteristics.

siemplify.LOGGER.info(f"---------- Events creating started for alert {aler
t_id}")

try:
if created_event is not None:

alert_info.events.append(created_event)
siemplify.LOGGER.info(f"Added Event {alert_id} to Alert {alert_id}")

Raise an exception if failed to process the event
except Exception as e:

siemplify.LOGGER.error(f"Failed to process event {alert_id}")
siemplify.LOGGER.exception(e)

return alert_info

Finding the URL in the email body

This function checks if the body of the email has one or more URLs.

For each email message we will need to access the email body by searching the email message part that
contains text or plain type information.

def find_url_in_email_message_body(siemplify, email_messages_data_list):
"""
Search for a url in the email body,

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 50 of 271

"""
all_found_url_in_emails_body_list = []
for message in email_messages_data_list:

for part in message.walk():
if part.get_content_maintype() == 'text\plain':

continue

If the body contains the wanted type of information we will load this information by email_message_body
= part.get_payload().

After loading all the information we can now search the URL by using the regex format:

URLS_REGEX=r"http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9
a-fA-F]))+"

which extracts the URLs from the email body.

email_message_body = part.get_payload()
all_found_urls = re.findall(URLS_REGEX, str(email_message_body))
for url in all_found_urls:

if url not in all_found_url_in_emails_body_list:
all_found_url_in_emails_body_list.append(url)

siemplify.LOGGER.info(f"The URL found : {all_found_url_in_emails_body_list}")

return all_found_url_in_emails_body_list

We have finished going through the connector code and we will now configure a connector that will ingest
cases into the platform from a selected email inbox in Gmail.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 51 of 271

1.5.2. Configuring the Connector

Overview

When a new connector is being configured, the platform uses the connector script in an integration as a
template only, and the configured connector is an instance of that connector template. You can add multiple
connectors with different configurations using the same code you created for the connector in the IDE.

Connector Configuration

1. Select the gear icon in the upper right hand corner to access the connectors module and configure a
connector under the relevant environment.

2. Next, from the Connectors screen click the + icon in the upper left hand corner to add a new
Connector item.

3. Configure the Connector parameters and select the environment relevant for the connector. In this
example, the connector is configured under the Default Environment. Once you fill in all the
credentials, save the connector.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 52 of 271

In the next step we will test the Connector and ingest a test case into Siemplify platform.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 53 of 271

1.5.3. Testing the Connector

In this section we will show an example of an alert that is ingested into the Siemplify platform.

1. Insert a malicious email into the platform.

copy the text below and send this email from another user:

Subject: Your New Salary Notification

Email body:
Hello, You have an important email from the Human Resources Department with regards to your
December 2018 Paycheck
This email is enclosed in the Marquette University secure network.
Access the documents here http://markossolomon.com/F1q7QX.php
Ensure your login credentials are correct to avoid cancellations
Faithfully
Human Resources
University of California, Berkeley

2. Navigate to the ‘Testing’ tab and test your connector by clicking the button ‘Run connector once’ and
view the result in the “Output” section on the right.
If your connector runs successfully you will see an alert which is a single unread email message that
the connector ingested (make sure that you have an unread email in your mailbox to insert a sample
alert).

3. You can see a preview of the email by clicking on the preview icon.

4. After ingesting a sample alert by clicking the “Run connector once” we will ingest the alert into the
case queue by selecting the alert and clicking the button ‘Load to system’.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 54 of 271

5. Navigate to the Cases tab and view the case you have ingested into the Siemplify platform.

6. After the connector receives the email by translating the email data to Siemplify data we can see our
alert in the “Cases” tab in the case queue.

When the case first appears in the system it is not mapped and modeled, this will be done in the next
step.

Next, we will see how each field in the code corresponds to the relevant field presented in the context
details in the platform itself. Click on the alert to view the Alert Context details on the right.

The field in the platform
The field in the
code

alert_info.na
me = email_me
ssage_data['S
ubject'] This
represents the
subject of the

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 55 of 271

email message :
“YOUR NEW
SALARY
NOTIFICATION”

alert_info.ru
le_generator
= RULE_GENERA
TOR_EXAMPLE
The name o
f the siem ru
le which caus
es the creati
on of the ale
rt

alert_info.ti
cket_id =
f"{alert_id}"
The email
message unique
id

alert_info.di
splay_id =
f"{alert_id}"
The email
message unique
id

alert_info.de
vice_product
= PRODUCT As
we defined in
CONSTANTS: PR
ODUCT= "Mail"

alert_info.de
vice_vendor
= VENDOR As we
defined in
CONSTANTS: VE
NDOR = "Mail"

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 56 of 271

alert_info.st
art_time = da
tetime_in_uni
x_time alert_i
nfo.end_time
= datetime_i
n_unix_time
The time the email
message was
received

alert_info.pr
iority = 60 As
we defined for this
alert: Informative =
-1, Low = 40,
Medium = 60,
High = 80, Critical
= 100.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 57 of 271

1.5.4. Mapping & Modeling

Your alert is not mapped and modeled by default. In order to do so, navigate to the mapping and modelling
section (click the gear icon).

1. For this use case we will map our case using the predefined family – MailRelayOrTAP for email
monitoring events.

2. Mapping and Modeling can be in one of the three stages of hierarchy, for this example:

• Source – This is the Source name field as we filled earlier. This is the Source that digested the data
and created an alert in Siemplify platform. For this example the Source name is “Email Connector”.
In this stage we will map only the time, since these fields are the same in each stage.
If you map at this stage then the following stages (Product – “Mail” and the Event -“Suspicious
email”), will inherit the same modeling mapping we performed.

• Product – The product is “Mail”, which is the product that digests the data that came by the source
“Mail”. For example a connector can digest data from many sources. If mapping and modeling is
configured at this stage then the following stage (“Suspicious email”) will inherit the same modeling
mapping we performed.

• Event – This is the event_name as we filled in earlier, for this example the event name is
“Suspicious email”. The event in this case is the email message itself.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 58 of 271

3. We will map the relevant fields by assigning each field to the appropriate field in the code. In this
mapping section we will map all the fields under the “Product” level.

Rule
Level

Target Field
Extracted
Field

Transformation Function The field value

Product DestinationUserName

event["de
stination
UserNam
e"]

TO_STRING
The email address
of the person who
received the email.

Product SourceUserName
event["so
urceUserN
ame"]

EXTRACT_BY_REGEX Regex format: The email address
of the person who
sent the email

Product EmailSubject
event["su
bject"] TO_STRING The email subject

Product DestinationURL
event["fo
und_url"] TO_STRING

The URLs found in
the email body

Product StartTime
event["st
artTime"] FROM_UNIXTIME_STRING_OR_LONG

The time the email
was received

Product EndTime
event["En
dTime"] FROM_UNIXTIME_STRING_OR_LONG

The time the email
was received

4. After Mapping this case we will simulate the alert to see the mapping result, on your right hand click
on the three dots icon and select “Simulate Alert”.

Then, a new simulated alert will appear as a new case in the case queue. All the simulated cases are
tagged with the yellow “Test” mark on the left of the case name.

Please note that you can click on the information icon to view the transformation function as
presented in the pic below.*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 59 of 271

After mapping the case you can see each email message arguments that we mapped on the right of
the screenshot below.

If you would like to see a visual view of the entities involved in the event and the relations between
them, click on the Explore button.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 60 of 271

Now that you have finished the mapping and modelling step you can now start ingesting alerts into
your platform automatically that will inherit the mapping and modelling you have performed. To do so,
navigate back to the Connectors screen, enable the toggle and click save.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 61 of 271

Congratulations!! You have developed your first connector in Siemplify platform.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 62 of 271

1.6. My First Automation

Overview

In this article you will learn how to create your first automation using the actions you created in the My First
Action. The playbook we will create is a basic phishing use case where we will extract the domain details
from the url which is part of an alert. We will then enrich that entity, add an insight with the Domain country,
check if the country is in a custom list and then run an IF condition on the check if in custom list to
determine if the case requires further investigation or not.

Create your first Playbook

1. In the IDE module make sure that the actions you created as part of the “WHOIS XML API” integration
are enabled using the green toggle. Once the actions are enabled, they will only then be available to
use in the playbook designer.

2. For your First Automation Playbook we will also create a custom list of the countries that are OECD
countries and use this custom list to determine if the country of the Domain requires further
investigation of the case or not. Navigate to the Settings module in the top bar, click on the
Environments tab and then on the Custom lists. We have created a custom list of countries that are
a “list of OECD countries” that you can import to your platform using the import icon. You can also
customize your own custom list using the plus icon.

3. To create your First Automation playbook, navigate to the Playbook Designer and click on the + icon
in the left part of the playbook queue.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 63 of 271

https://cdn.manula.com/user/14758/docs/oecd-countries_v1.csv

4. In the Create New dialog choose the “Playbook” radio button, select a folder the playbook will be
presented in and define the environment.

5. Provide a name for the playbook next to the playbook toggle and begin to customize the playbook.

You can also import the premade playbook using the import icon found in the menu icon in the top left part
of the playbook designer.
My First Automation Playbook

6. Each playbook starts with the trigger that will trigger the playbook. Navigate to the Triggers tab and
drag the “All” Trigger to the first step of the playbook. The playbook will trigger on every alert ingested
into Siemplify.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 64 of 271

https://cdn.manula.com/user/14758/docs/my-first-automation-playbook_v3.zip

7. We will now begin to form the playbook with the actions we created as part of the “WHOIS XML API”
Integration. Navigate to the Actions tab and click on the “WHOIS XML API” drop down. The actions
you created will be presented beneath the integration. If the actions are not visible, make sure they
are enabled in the IDE module and saved.

8. The First action we will drag into the playbook after the trigger is the “Get Domain Details”. Lets
customize the action and define the scope we would like the action to run on. As presented in the
screenshot below we have chosen to run the action on all the Entities that are URLs and for the
Domain name field we have used the placeholder “Entity Identifier”. In order to insert a placeholder

click on the placeholder icon and search for Entity.Identifier in the search bar. As
mentioned previously, this action will connect to the “WHOIS” site, extract the details of the Domain
and present them in a Json format. The parameter we defined for the action Check Availability
will check if the domain is available or not.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 65 of 271

9. For the second action in the playbook, drag the “Enrich Entities” action and customize the action to
run on “All URLs”. As mentioned in the “My First Action” how to, we created the action to run on a
specific entity scope therefor do not need to define the field such as Domain name as done in the
previous action.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 66 of 271

10. For the next action we will use the “Add Entity Insight” action which is part of the Siemplify Integration.
For the Entity scope we will choose the “All URLs” as done in the previous actions in the playbook and
in the Insight itself we will use the Siemplify Expression builder to extract the specific field in the
Json – Country. In order to open the expression builder, click on the placeholder icon, choose the
playbook dropdown and select the icon presented next to WHOIS XML API_Get Domain Detail
s_1.JsonResult

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 67 of 271

The Json Sample presented in the Expression builder is the Json example we inserted in the IDE as part of
the “My First Action” How to. In order to extract the Country field from the Json we will click on the “Country”
field in the Json. In order to test the placeholder click on the Run icon and view the result under the
“Results” field as shown in the screenshot below.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 68 of 271

11. Next, we will create an Entity from the country related to the domain in order to run the “Is in custom
list” action on that entity in the next step. From the Siemplify Integration drag the “Create Entity”
Action into the playbook and configure the action to run on “All URLs” and use the expression builder
to insert the country placeholder in the entity identifer field. For the Entity Type choose the Generic
Entity type and click on Save.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 69 of 271

12. For the next action in the playbook we will add the “Is in Custom List” action which will run on all
generic entities (the generic entity we created previously) and in the Category we will add the
category we configured for the custom list we created as presented in the screenshot below.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 70 of 271

13. Now we will add the IF condition in the playbook to determine if the country related to the Domain
name requires the Analyst to further investigate the case. The 1st branch will check if the script result
for the “Is in Custom list” returned a false result and the Else branch will go to the opposite result as
shown in the screenshot.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 71 of 271

14. Once we have added the “IF Condition” action, 2 branches will be created right after it based on the
number of branches you defined in the flow action.

15. Lets start by customizing the 1st branch. If the result for the “Check in custom list” returns a false
result, it will lead to this branch. If the result is false this means that the country related to the domain
is not in the custom list we created for OECD countries, leading us to want to further investigate this
case. For the first action in this branch we will drag a “Case Tag” action from the Siemplify Integration
and add the tag “Not in OECD countries”.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 72 of 271

16. The next action will be to assign the case to a higher Tier to further investigate this case. In order to
do this we will drag the “Assign Case” action to the playbook and choose @Tier2 as the Assigned
User.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 73 of 271

17. The last action of this branch will be “Siemplify Change Priority” action in order to change the priority
to “High” as shown in the screenshot.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 74 of 271

18. Once we have finished with the top branch we will customize the Else branch. As this branch
indicates that the country of the domain is in the OECD countries we have decided that it will not
require any further investigation. We will first add a tag as done in the 1st branch with a tag “In OECD
countries”.
We will then add an additional action that will close the case. All the actions that we have added until
now into the playbook have been configured on Automatic mode. As closing a case is a sensitive
action we have configured this action to run manually and will require the response of the analyst to
execute the action. Add the Reason, root cause and comment in the close case action and save the
playbook.

You have now finished customizing your First Automation. In order to see the execution of the playbook
navigate to the cases screen, simulate the “Phishing Email” Case and follow the playbook running on the
alert and the result of each action in the playbook.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 75 of 271

1.7. Publish Your First Integration

Overview

Once you have developed your first integration you can publish it to the Siemplify Integration Marketplace.
This is a great way for users to share their custom integrations with other users.
In this “How to” we will go through the steps of how to publish your own custom integration.

1. Navigate to the IDE and click on the “Publish integration to Marketplace” icon.

2. Choose the integration you would like to publish from the dropdown and click on the Publish button.
The user info presented in the screenshot will be published together with the integration in the
Marketplace. Once you click on publish integration, it will be sent for a review by Siemplify experts,

https://www.youtube.com/embed/lfJcnWNnujs?rel=0

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 76 of 271

https://www.youtube.com/embed/lfJcnWNnujs?rel=0

after which it will be published in the Marketplace for all Siemplify users.

3. Once the integration is published in the Marketplace it can be filtered using the “Filtered by users”
filter which will filter all the integrations that were published by the Siemplify Community.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 77 of 271

1.8. Requirements for Publishing Integration

Integration Requirements:

• Python 3.7 – we recommend to develop all integrations in Python 3.7.

• Integration Description – the integration should include a description of the product you have
chosen to integrate with.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 78 of 271

• Icons-

SVG Icon – each integration should be published with an SVG icon that will affect all the integration icons in the
platform.
PNG Icon – each integration should also include a PNG icon that will display as the picture presented in the
Integration Marketplace.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 79 of 271

• Integration Category – we recommend defining the integration category to enable other users to
filter the integration in the Marketplace by its category (You can select one of the categories from the
list in the Marketplace).

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 80 of 271

• Dependencies – if there is a need to use external libraries, add the dependencies in the integration
settings.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 81 of 271

• Integration Parameters – each integration should include the parameters required for a successful
integration with the product, including a description of the parameter.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 82 of 271

• Manager – in order to avoid reusing code it is recommended to add a manager to the integration. A
manager is a Python file that can be referenced from every other script in the integration.

• Ping action – a ping action is a required action to test a successful connection to the product. The
result value of the action should be true when the connection is successful. This action should be
disabled since it’s not an action that is used in a Playbook.

• Linux – the integration should support Centos OS 7 and above.

Action Requirements

• Action description – each action should include a description that explains the functionality of the
action.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 83 of 271

• Action structure – it is recommended to follow the template presented in the IDE when creating a
new action.

• Action parameters – each action should include the parameters relevant to the action, including a
description explaining the parameter. Make sure you match the type of the parameter according to the
requirements of the action.

• Running action on a context of an alert – it is recommended to create the actions in the context of
an alert. This means applying the logic so that the action will allow running on a specific scope of
entities, for example on URL entities. This can be done by using the siemplify.target_entities

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 84 of 271

method which returns a list of all the target entities in the scope we have chosen to run the action on.
An example of implementation can be found in the article “My first Action”.

• JSON Result – for actions that return data, the action should return a JSON result by using the
function add_result_json.

• Add JSON Example – it is recommended to add a JSON example that can be used in the expression
builder when creating a playbook using your integration. This can be done by clicking on the JSON
icon in the IDE and importing your JSON example.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 85 of 271

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 86 of 271

The JSON example enables the user to use the JSON result values as “placeholders” in a playbook. An
example can be seen in the attached video

• Enrich Entities – if enrichment is relevant to the action we recommend adding an enrichment step in
the action to enrich the entities with the data coming from the product you integrated with. It is highly
recommended to add a prefix to the enrichment field keys.
For example, suppose we want to enrich an entity with the following data:
entity_enrichment = {"first_name":"First Name", "last_name":"Last Name"}
First, you have to make sure that the dictionary is not nested and has only one hierarchy in it.
Then, add the product name as a prefix.
For example, in the following code we are adding the prefix “Zoom” to the new fields that were added
by the enrichment action
entity_enrichment=add_prefix_to_dict(entity_enrichment, "Zoom")
Then, update the additional properties of the specific entity by using the method: entity.addition
al_properties.update(entity_enrichment)
Once the entity’s additional properties were updated we will add them to the alert by using this
method: siemplify.update_entities(enriched_entities)
You can see the entity’s full details by clicking on it.

https://fast.wistia.net/embed/iframe/80iv0tmitf

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 87 of 271

https://fast.wistia.net/embed/iframe/80iv0tmitf

• Logging – it is highly important to add logs, especially in complicated actions. Every exception or
error should be logged with the appropriate level. (e.g. info, warn, error exception)

https://fast.wistia.net/embed/iframe/h2wbhykffa

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 88 of 271

https://fast.wistia.net/embed/iframe/h2wbhykffa

1.9. My First Use Case

Overview

What is a Use Case?

A Use Case is a package of items that together provide a solution (e.g. automating phishing threats,
reducing false positives, orchestrating incident investigations, etc.).
Once a Use Case is published to the Siemplify marketplace it is available for all Siemplify users to use.
A Use Case package consists of Test Cases, Connectors, Playbooks, and also Integrations and rules of
mapping & modeling.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 89 of 271

1.9.1. Creating a Use Case

Step by Step Guide

1. Define the Use Case

Write a description of the security threat you are solving with the use case. Define what kind of alert will be
handled and what is the detection product that generates it.
For example, CrowdStrike – Falcon Overwatch via Malicious Activity.
The next thing you should do is draw an incident response, orchestration, or automation process, to handle
this alert.

2. Prepare Use Case Alerts

You can create a custom Alert / Event according to a real data case.
Generate sample security alerts/events from a detection tool to simulate the use case.
Go to Cases, and under the plus sign click on “Simulate Cases”.

Then, click on the plus sign in the opened window.

Why Create a Simulation Alert?
When you create a Simulation Alert, you can always use it to test the playbook and the use case. Also, this
simulation will be part of the use case package.

How do you simulate an alert?
Fill in the fields of the simulation alert based on the alerts you prepared for the use case.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 90 of 271

Simulation Alert Fields:

Next, you need to create a simulation alert in Siemplify, based on your sample alert/event.

• “Source \ SIEM Name”:
Displays the source of the alert, be it a SIEM or another detection tool.
Example: This field has the value “Arcsight”, a SIEM product.
If the alerts are generated by the product itself, and Siemplify pulls it from there- add the product
name here.

• “Rule Name”:
Displays the SIEM rule that generated the alert.
Example – This field has the value “Data Exfiltration” which is a SIEM rule.
If no SIEM is involved, just add the name of the alert generated by the detection product.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 91 of 271

• “Alert Product”:
Displays the detection tool that generated the alert.
Example – The Alert Product is a DLP (Data Loss Prevention) product.

• “Alert Name”:
Displays the name of the alert as generated by the product.
Example – The alert name is“Data Exfiltration”. (Meaning, unauthorized movement of data of any
sort).

• “Event Name”:
Displays the name of the base event that triggered the alert.
Example – The event name is “Data Exfiltration” since it is also the name of the event.

• “Additional Alert Fields”:
Displays usually an alert is generated by a SIEM, It displays additional content for easier incident
response.
Example 1 – SIEM fields like Severity, Impact, Sensitive Assets, etc.
Example 2 – If no SIEM is involved, just add one field with the name of the alert (alert_name:).

• “Additional Event Fields”:
Displays all the raw security data used in incident response. Add here all the data from the sample
alert you are using for the use case.
Use the exact schema of fields found in the sample alert.
Most Common Use – Put here the security data from your alert (e.g src_ip, dest_port, email_headers,
etc.)

3. Extract Entities (Map & Model the data)

Select the visualization model of the alert (the entities Siemplify should extract and the relations between
them), and map the raw data fields into the selected model.

You can get here by clicking on the configuration icon on the event (As seen in the below screenshot). More
information on how-to can be found here- Getting Started with Siemplify, Create Entities, Mapping &
Modeling.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 92 of 271

https://www.manula.com/manuals/siemplify/quick-start-guide/5.6.x/en/topic/ontology

The next thing you should do is check if all the entities are created accordingly.

You can watch the entities under the case tab, “Entities Highlights” (As seen in the screenshot below). Click
“View More” on each entity to make sure the mapping is properly configured.

4. Build a Playbook

First, you want to define the incident response flow for the alert, be it a chart or a drawing. Then, design the
flow you defined as a Siemplify playbook. To do so, you need to download and configure the integrations
you would like to use in the playbook. See here: Siemplify Integration MarketPlace, Configure Integrations
h4. Configuring Actions in the Playbook

• “Action Type” – Select whether this action should run automatically or manually (wait for a human
approval)

• “Choose Instance” – Select Dynamic
• “If Step Fails” – Choose whether the playbook will stop if the action fails or it will skip to the next

action.
• “Entities” – Select what type of entities this action should affect (of those you extracted in your

simulation alert).
Other parameters – Fill in the action-specific parameters based on the documentation of the
integration

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 93 of 271

https://www.manula.com/manuals/siemplify/quick-start-guide/5.6.x/en/topic/integrations

Configuring Conditions in the Playbook

Determine the amount of branches – add branches with the “Add Branch” button.
For each branch define the conditions that will trigger this branch.
Use placeholders (square brackets) to reference conditions to Event data, Previous Action results, and
more.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 94 of 271

Important note – Use tools you can actually test in your flow.
Test on live data – Set up a connector that can pull alerts similar to the example alert you created for
simulation. Configuring the Connector.

To Test The Connector:

1. First Save the configuration of the connector.
2. Click on “Run Connector Once” to make it pull an alert from the source.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 95 of 271

3. “Sample Alerts” will show an alert you can ingest into Siemplify.

4. “Output” will show the script logs to indicate the success or failure of the execution.

More information regarding testing the connector can be found here, with an example of an Email connector
with a Phishing Email alert.

Be sure to verify that the same mapping applies to the real alert so that Siemplify is able to extract the
relevant entities. Also, make sure that the playbook runs end to end on the alert and performs the defined
logic. (try both with malicious and non-malicious alerts).

5. Write a guide

The Use Case you’re creating will be used by other Siemplify users. In order to improve their experience, it’s
highly recommended to attach additional content to each use case, in which you should:

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 96 of 271

• Explain the use case and its value to the SOC.
• Provide recommendations to further improve the Use Case.
• Explain in a few words how to run the use case with simulation data.
• Guide the user about how to run the use case on actual data generated by them.
• Explain How to get free licenses for the tools in use (if there are such).
• Include a How-to on setting up the connector.

The guide can be attached in the “Publish Use Case”, later on.

6. Publish Use Case

It’s time to assemble your Use Case- Go to the Use Cases Marketplace, and choose “Create New Use
Case” under the hamburger icon on the bottom right.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 97 of 271

In the opened window, fill in the details and add the items you developed – Test cases, Playbooks, and
Connectors.
In the description category, you can add the guide you’ve previously written. If it is too long, you can write a
short description and attach a link to your full guide.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 98 of 271

Now, before you click save- you can export the Use Case. And after that, you can click save. But, don’t
worry – You can also export it later.
So after you click Save, you can export the package as a ZIP file, import it for testing, And finally, if all goes
well-Publish the Use Case to submit it for approval.

CONGRATULATIONS ON YOUR FIRST USE CASE!
*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 99 of 271

1.9.2. Requirements for Publishing Use Case

• The simulation alerts in the use case are based on real alerts from a real product.
• All entities are extracted when running the simulation alert in a clean environment.
• All entities are extracted when running the real alert with the connector.
• The playbook runs end to end without errors.
• The final delivery is a ZIP, export that can be imported without errors into the use case marketplace.
• When deployed, all user has to do is configured the integrations to make the playbook run end to end

with simulation alerts.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 100 of 271

2. Playbook Lifecycle Management

The Siemplify user-friendly playbook builder was designed to enable anyone on your security team to build
powerful playbooks with ease. Instead of requiring coding expertise, users select predefined actions from
200+ supported security, IT and third-party tools and snap them into place on the playbook grid.
From the variety of trigger and branching options to built-in data parsing, playbook nesting and more, users
find the simplicity of the Siemplify playbook designer a true game changer.
As your SOAR implementation matures and increases in value, your playbook library will develop and grow
as well. Siemplify enables a full playbook lifecycle management process which makes maintaining,
optimizing and troubleshooting playbooks at scale simple and easy.
Unique capabilities such as playbook run analytics, reusable playbook “blocks”, playbook versioning and
rollback and the Playbook Simulator feature ensure your SOAR implementation grows in value, not
complexity.

This guide focuses on the design and implementation of automated playbooks using blocks for scale and
management alongside the Playbook Simulator for testing and training.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 101 of 271

2.1. Prerequisites

For the purposes of understanding the Best Practices playbook guide, it is important to familiarize yourself
with the basic Siemplify data model. Please make sure to know and understand the following objects and
their relations:

• Case
• Alert
• Event
• Entity

The following diagram provides a visual representation of the data model:

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 102 of 271

2.2. Basic Playbook Design

This section is dedicated to the ‘most common’ playbook design. We will guide you through preparation,
features and tools to the point where you feel comfortable enough to implement a playbook using out-of-the-
box capabilities. For more advanced customization of the system, please refer to the “Advanced” section.

Preparation

While the data model is the core, the playbook’s role is to shape and edit the data, so before you dive into
the process of designing and developing a playbook, you should know and understand the data you are
working with.

It is recommended to focus on a specific type of alert at a time, construct a working flow for that alert, and
expand from there. Though working on a single alert type, please keep in mind that Siemplify supports
blocks (nested playbooks) in your flow. Designing your automated flow with that in mind will help later on
with the expansion to other alert types.

When we refer to “Alert Type” in this guide, we mean a ‘family’ of alerts. For example, “User A multiple failed
logins” is a specific alert in the “Multiple failed login” family. Your playbook should aim to automate any
“Multiple failed logins” alert, regardless of the specific user that failed to login in your example alert.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 103 of 271

2.2.1. Know your Alerts

The first step you should take is to choose which alert-type you are going to automate now. If we continue
with the example above, let’s say we work with “Multiple failed login” alert-type. Once this is established,
you should gather at least 2-3 samples of this alert type and note down the relevant cases. You should try
and categorize the different properties of the alerts you’ve gathered. Look for similarities (common
properties) and for differences (what makes one alert differ from the rest of that group). When you start
building your playbook you are most likely going to use those different properties to design your flow (logic)
or simply to act on the proper entities.

Please note that those differences in properties are mostly used for decisions, while actions usually come in
sequences. For example, let’s say you are going to run a sequence of enrichment actions, then take a
decision, then run a sequence or remediation actions. These two sequences can and should be created as
blocks (to be reused for other types of alerts in different combinations), and the various alert based
decisions of which sequence to execute usually come as part of the playbook itself.
Ideally, you should gather as many different alerts of that type as possible, to make sure your designed flow
has no flaws.
Once you have listed these alerts, make sure to explore and understand the scenario, and decide which
events are involved (and how many) and what are the main components that are either relevant for
decisions or for the flow itself. Usually, IP addresses, hostname/domains, file hashes, URLs, ‘types’,
‘actions’ and so on. Don’t worry if you are not sure what’s relevant, later during the planning phase and the
development phase you will have time (and it is recommended) to go back to the alerts ‘raw-data’ and
observe what other pieces of information might be used.

Here’s an example of ‘relevant’ data from a “Phishing” example (“Phishing would be the alert-type and this
is an instance of that type as an example):

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 104 of 271

In the image above we see the context details of an event (taken from a “Phishing” alert). Here we see all
key-value pairs available in Siemplify for that event. Usually, security events will have all sorts of different
pieces of information, most of which are irrelevant. In the planning phase you should attempt and locate
relevant fields from the event(s) that will help you take proper decisions and actions automatically.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 105 of 271

2.2.2. Analyze existing manual flow

After understanding the alert, it is time to understand the process that analysts take to deal with it.

Collaborate with Analysts – It is recommended that every attempt at constructing an automated process
starts by consulting the professional personnel to understand how they deal with these alerts today (either
manually or with a different automation system) and what would be their desirable/ultimate process with
Siemplify. Usually, these are not the same. Unfortunately, human users greatly differ from automatic
processes, and you might have to translate their process into something more manageable. For example,
users tend to take actions as needed, and not always in the same order. This phenomenon might contradict
the idea of using blocks (reuse logic), because it will seem that each alert, or even each user does
something different, where in fact they do practically the same thing. It is your task to find the lowest
common denominator and design the automation in such a way that will allow you to both utilize blocks in
your flows as well as satisfy end user needs.

Try to understand the flow yourself and construct (with their help) a chart that describes the new desired
flow. You can use a workflow tool like Visio to construct that chart. This is also recommended as a
documentation process for the playbook, for other users (and yourself) in the future to better understand the
flow. Some elements are going to change and it makes the transition that much easier if everyone knows
what to expect.

Siemplify recommends constructing a list of “must-do” actions that are going to make their way into your
automation. For example, if the process includes sending notifications to customers or creating new tickets
on a ticketing system, these would be core actions because you MUST notify the customer, or the only way
to ‘act’ is by creating a ticket to the appropriate team.
It is important to remember that when you automate, you can ‘afford’ to do a little extra than what the
analysts are doing, but you should still keep track of what are the essential demands from the analysts and
make sure you give them their proper place.

This is also the place to make sure the expectations of all involved parties are clearly presented. You should
make sure that the analysts you design the automation for understand the end result of your work, that they
understand how the new process will look and what their role is in it. Once all teams are on the same page,
you can continue to the next steps.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 106 of 271

2.2.3. Begin Playbook Design

Now it’s time to ‘translate’ the complete flow into Siemplify’s language. You should have a clear
understanding of the flow and the data you have to work with at this point.

Frame required steps

Go over each step of the flow and identify the action(s) in Siemplify needed to achieve it. If this is your first
time dealing with these actions, it is highly recommended you play around with these actions in a test case/
environment to be familiar with the way they work and their outputs.

You should attempt to understand:

• Who: What entities are going to be affected (Scope)?
• Where: From where are you going to get the relevant information for the input parameters?
• How: How are you going to extract the needed information for the input parameters?
• What: What are the expected results?

Now, try and categorize the different actions into “logical” groups. A playbook typically has various stages it
goes through:

• Enrichment
• Investigation
• Decision/Escalation
• Response/Remediation
• Manage/Logging (Communication and Ticketing)

Note: A playbook can be built from any subset of the above stages, and each can appear more than once
(For example, you might want to take an immediate action before waiting for a manual decision from a user
and then continue with the flow).
The following is a visual representation of a DPL flow.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 107 of 271

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 108 of 271

2.2.4. Playbook Blocks – Identify Repeatable Logical Flows

To allow easier playbook building and management for large scale implementation, Siemplify provides the
unique ability to create modular sub-playbooks called playbook blocks. Just as software engineers build
their code functions, playbook blocks represent a repeatable process, triage for example, and can include
multiple actions, decision-making steps, inputs, and outputs. A block can be incorporated in multiple
playbooks as a modular piece for faster playbook building, making them more readable for engineers.
Siemplify playbook blocks makes it easy to manage and modify large amounts of playbooks, since a change
in a single block will affect all the playbooks using it. It is recommended that you take the time to consider
the use of blocks in your overall development of automation (across playbooks, as these blocks can be used
anywhere).

You should consider grouping up actions and logic into a block for:
Logical separation: Your playbook can be divided into logical sections, which can be grouped into
Siemplify playbook blocks. That way your overall playbook is going to be simpler and easier to understand
(and easier to modify later on – as you only have to update a single block which can then impact all the
playbooks using it).
Logical reuse: Sometimes, there is a specific sequence of actions that you might need multiple times. For
example, updating of an external ticketing system or the enrichment of IOCs.

A good example for playbook block usage that covers both reasons above is ‘Enrichment’. For starters, it
usually consists of multiple actions and some decisions – all of which can be grouped into a single block,
and therefore reduce clutter in the Playbook content (logic separation). In addition, enrichment is the most
common stage an alert goes through. This ‘Enrichment’ playbook block can be used over and over in
different playbooks. Furthermore, future updating of the enrichment process can be made in one place but
impact on your automation everywhere.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 109 of 271

2.2.5. Playbook Block Design

Before we dive into the process of designing a playbook block, you should be familiar with its capabilities.
From the simplest of aspects, a playbook block is like a playbook. It is simply a sequence of actions you can
use over and over in different places.

The major differences between playbook blocks and playbooks are:

• Playbook blocks have no trigger – as blocks run as part of a playbook and not on their own.
• Playbook blocks have an input and an output.

While designing the block you should keep in mind that it could be used in a vast variety of alerts (typically
of different types as well). Constructing a generic block might be a little bit frustrating as you have to
consider all edge cases, but it is going to be worth your while!

Standardized Input
If you are planning on using the block on multiple different alerts you might want to have some sort of
standardized input. Let’s say we are designing a block that quarantines hosts. It would be a good idea to
have some way to indicate which hosts are designated for blocking, in which tools (if you have multiple
relevant tools) and so on. A good example would be to ‘mark’ those entities with a specific flag (enrichment).
The most common example here would be the ‘Is Suspicious’ property. In this example, the block would
quarantine ANY hostname that is also suspicious, and it is up to you, in the playbook, to make sure you
properly tag those hosts.

Standardized Output
The output is a little bit more straightforward. Let’s say you have multiple enrichment tools running in the
same block but they do not always return values – and you want to have proper results coming out of the
block but you don’t care which tool found results. In this case you should make sure that the results are
standardized between all the different branches and that you get a single output out of the block. So for
example it could be a malicious/benign indicator.

The “Is Suspicious” property of entities is a good example. Many actions mark an entity as suspicious based
on different logic. You can do the same in your block, and thus convey a unified output for all playbooks
using the block (naturally, you can use any other property instead – enrichment is considered output as
well).

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 110 of 271

2.2.6. Design Tips

Playbook Blocks: Your main goal should be to work with blocks as much as possible. That being said,
having actions outside blocks is legitimate so you should consider each case individually. Use blocks to
have proper logic separation in your playbook, where applicable, or when you have a logic unit to be reused
in different flows.

Manual action placement: Sometimes there is no way around some manual work or it is simply not
available as an action yet. In these cases, it is recommended, if possible, to postpone the action as far as
possible and have as much automatic flow as possible. This is a good place to start accepting the new
approach of automation, where you can take more steps even if it is not always necessary, prior to a user’s
arrival, and have all data presented right away. In the long run it could free up a lot of analyst time.

Exit points: You are probably going to use multiple TI tools and sandboxes. It is all great and Siemplify will
take care of running it all, but it can still take time and stress other systems. It is recommended that after
each enrichment attempt (if relevant) you check whether you can already establish a TruePositive or
FalsePositive decision and move on right away, without completing the full investigative process. Obviously,
if you need data from the rest of the action, for a report for example, make sure to run them.

Bottlenecks: Some actions, like sandbox scans, take time. You should design your automation to ‘detonate’
these actions, continue with whatever other flow you have, and only stop the playbook to ‘wait’ for the
results once you have nothing else to do. For example, if you want to scan with 3 different sandboxes, you
should trigger all 3 then wait for all 3 responses, instead of doing it one by one.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 111 of 271

2.2.7. Summary of Implementation

By this stage should have a clear understanding of:

1. The data you are going to work with
2. The current flow taken by the professional team (Preferably as a sketch)
3. A mapping of the actions required by the manual flow to Siemplify actions
4. An idea of logic separation/reuse for block building

A playbook in Siemplify is built with the following hierarchy:
Action ⇒ Block ⇒ Playbook
If we take a second to compare playbook building to code writing the mapping would look like this:

1. Action ⇔ Basic function (Very specific/narrow)
2. Playbook Block ⇔ Complex function, made out of multiple basic functions
3. Playbook ⇔ Complete script/program made out of multiple functions of all types

In this guide, we are not going to discuss the creation of ‘Actions’. To further learn about Actions, please
refer to Actions.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 112 of 271

https://www.manula.com/manuals/siemplify/user-guide/5.6.x/en/topic/actions

2.3. Build the Playbook Block

1. Start by choosing the block you are going to develop. You should have its structure already designed
as part of the complete playbook and by now you should roughly know what needs to be done as part
of the block’s automation.

2. Identify at least one of the alerts you are going to automate and simulate it. This new alert (remember
the case ID) is going to serve you for the reminder of the guide as a test alert for the playbook’s
validation.

3. Head over to the ‘Playbooks’ tab and create a new block. Give it a proper name and turn on the
simulation mode (Simulator).

4. Drag the action you want to add to the playbook block and place it in its appropriate place. A flow step
may also be relevant here.

5. Configure the action using Placeholders/Expression-builder, entity, integration instances etc. More on
this step later in the guide. Note, if you are missing parameters you have two options:

• Result from a previous action – If this action does not exist yet, add that action to the block and
work that action instead.

• Information from the parent playbook – Add a new parameter to the block that represents this
input and use it as a placeholder.

6. When you have finished building the playbook block, click Run to run the playbook block in simulation
mode on an appropriate test alert.

7. Look at the step’s result and make sure you are satisfied with it. If you are satisfied with it, hit “Pin
Results” and change the action’s state into simulation. You are done here and can return to the next
step to continue designing your block.
Note: If your action enriches entities and you need it later on the block, you will have to manually add
the relevant fields after you pin results.

8. If you are NOT satisfied with the step’s result, you have multiple options:
• Change the configuration
• Replace the action with a different one
• Click “Pin Results” and change the output to match your liking (relevant if you are querying a

system that right now does not have data but you know how it should be structured)
9. Carry on repeating this procedure by adding new steps and running them in the simulator. Note that

once you have pinned the results for a step, it will not run again in the Simulator. Make sure you
switch back to normal mode if you want to rerun the Playbook block with fresh data.

Before you start this procedure, make sure you read up on the Playbook Simulator*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 113 of 271

https://www.manula.com/manuals/siemplify/how-to/5.6.x/en/topic/working-with-the-playbook-simulator

2.3.1. Determine Playbook block output

Once you finish building a playbook block, in other words – when you are satisfied with the flow and it fulfills
its purpose in your parent playbook, you should have: one or more actions/flows and possibly inputs. Now is
a good time to consider the block’s output. While it is true you are able to reference internal actions from a
block in its parent playbook, it is generally considered ill-advised. Siemplify recommends you divide a
block’s output into three (Note that you don’t have to use any of these output suggestions; playbook block
output is not mandatory):

Playbook Block output – A playbook block output is a simple string returned as a placeholder from the
block. You can use it to return a simple boolean value, the number of results found in a query or any other
‘string’ result (ideally not a JSON, unless it is usable as a string)

Entity enrichment / context parameters – Playbook blocks can enrich entities, and this enrichment sticks
with the entities throughout the case. That means that any enrichment, regardless of its origins (block or
not) is going to stick and can be used as some sort of output. The most common field of enrichment to use
is the “Is Suspicious” field. Many TI actions mark entities as suspicious, and you can use it in your playbook.
Context parameters are variables you can set with actions in your block/playbook, and are stored at the
alert/case level. You can have your playbook block modify these, and then use them from your playbook.

Action results (Not Recommended) You can always refer to direct actions from blocks. The issue here is
that if you have flows in the block, you cannot know for sure which action actually ran, which is going to
cause issues with placeholders. If you know with 100% confidence that an action ran, or you have a way to
deal with unresolved placeholders, then you can use action results as output.

It is highly recommended to properly describe the block’s expected input and output in the description fields.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 114 of 271

2.4. Build Playbook

Playbook implementation is very similar to a Playbook Block implementation. The Playbook has a trigger
which when set will cause the Playbook to run. Essentially, this is going to decide WHEN to apply the
playbook (on which alert). Please refer to the User Guide for more information about triggers.

To build a playbook, make sure to turn on the Simulator and follow these steps:

1. Start building the Playbook with a trigger.
2. Drag and drop an action/flow/block – this time you have your blocks at your disposal and you can use

these as well. Please note that blocks are either in simulation mode by definition or not. You cannot
change their behavior from the playbook designer.

3. Configure action
4. Run action
5. Save results (save if satisfied, change and repeat if not)
6. Repeat steps above as necessary

(The short procedure above assumes that you have read the Build the Playbook Block section)

When you have finished designing your playbook and decide the Playbook is ready for production, you
should turn off the simulation mode for each Playbook Block and Playbook so that they run in production
mode.

Please note that Siemplify highly recommends that you use the playbook, still in simulation
mode, as a training basis for your analysts and users. Get them familiar with the new
automation and have them suggest changes before you take it into production officially.
*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 115 of 271

https://www.manula.com/manuals/siemplify/user-guide/5.6.x/en/topic/triggers

2.5. Individual Features

So far we’ve covered the implementations at a high level. Now we will dive into details of how exactly how to
do that, what to look for and how to utilize the different capabilities Siemplify has to offer. Following are
sections for each feature or tool Siemplfiy has to offer for automation design and execution:

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 116 of 271

2.5.1. Placeholders and the Expression Builder

Placeholders are essential to the playbook. There is not much sense in writing automation that does not
take into account the context of the alert at hand. Placeholders essentially allow you to ‘inject’ relevant
information from the alert’s context into your automation process. For instance, if you have a brute force
alert, you can use a placeholder for the username and send an email to his manager (yet another
placeholder) with details about the incidents (and more placeholders!)
For this reason, it is extremely important that you take the time to understand placeholders in Siemplify and
how they resolve in real time. Also, take the time to play around with them and experiment on your own!

Siemplify has six types of placeholders to offer, each representing its own portion of the context of the data.
You should refer to the data model chart at the beginning of this guide for more information.

• Environment (+ Dynamic Environment Parameters)
• Case
• Alert (Note that a playbook runs on an alert)
• Entity
• Event
• Playbook

The placeholder types are ordered from the highest level of hierarchy to the lowest level. There are ‘shared’
properties that can be used/accessed from multiple locations, and their ‘share’ level is determined based on
the above level of hierarchy.

Environment > Case> Alert> Entities/Events

And we have the playbook, which shares nothing with other playbooks (other than context parameters that

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 117 of 271

are saved on the alert/case level). Remembering the hierarchy is rarely needed for the implementation
itself, but it is important to understand the data model you work with nonetheless! Here is a screenshot of
the placeholder inserter with all 6 (+1) types of placeholders:

Simple Placeholders

Basic placeholder placement – The actual usage of placeholders in Siemplify is straightforward. It involves
putting information inside square brackets ‘[]’. Your placeholder consists of two parts: type and key. The
type would be one of the 6 types described above and the key will be the field you want to extract. For
example, if you want to refer to the current case’s ID, all you need to do is enter: [Case.Id]. The square
brackets lets Siemplify know it’s a placeholder, then comes the type (“Case”) and afterwards the key we
want to extract (“Id”). This whole string, including the square brackets, will be replaced in real time with the
case’s ID.

Placeholders as part of a bigger input – You can use one or more placeholders simultaneously in one ‘input’
parameter by simply writing down your input and incorporating the placeholder syntax. For example, let’s
say we have an event field named ‘username’, and we want to write a comment to the case saying the user
is involved in malicious activity. Our placeholder might look like this:
[Event.username] found to be involved in malicious activity.
Siemplify will know to only evaluate the term in the square brackets and leave the rest unchanged

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 118 of 271

Multiple placeholders – Siemplify knows to evaluate placeholders independently over the input. That means
you can use as many placeholders and free text as you want as part of your input parameter.

JSON placeholders and expression builder

The playbook type placeholder represents action results of the current running playbook. Actions, usually,
have two results: ‘simple’ string result and a JSON result. The ‘simple’ result behaves exactly like the rest of
the placeholder types. To let Siemplify know you want a playbook-type placeholder, all you do is simply use
the square brackets with the action’s name and the script result name (it is automatically populated if you
use the placeholder placement tool).
The JSON placeholder is different. You can still refer to it the same way you would refer to a normal
placeholder, but the result will be a string representation of the JSON, mostly unusable as is. For that
reason, Siemplify has introduced the ‘Expression builder’, which is used to extract valuable information from
the JSON.

The Expression Builder’s UI looks like this:

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 119 of 271

On the top left side of the screen, we have the JSON example. This is an example output JSON from the
action result you have just referenced. This is not the real output of that action for the input you’ve supplied.
It is strongly recommended to utilize the Playbook Simulator, run the referenced action and set its results to
see the actual results here, instead of the example output.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 120 of 271

To work with the Expression builder, all you need to do is browse through the JSON example, and click on
the key you want to extract. In the screenshot above we’ve clicked on the “hash” key. Siemplify will
automatically produce the relevant key-path you chose and present it in the “Expression” area below. At this
point, you can click the “Run” button to make sure you’ve got the correct value. Note: Siemplify’s
placeholder logic will return a comma separated list of values whenever more than one possible result is
found. In this example, if we had more entities, or simply a list of values for the “hash” field, the placeholder
would resolve to a list of values separated by a comma.

For a more advanced manipulation of the JSON data, Siemplify has a list of functions at your disposal. You
can find these functions on the right side of the screen. You can hover over each function for a short
description and its signature (input parameters). To use these functions, all you need to do is click on it.
Siemplify will automatically add that function, with a template of the parameters, to your expression.

Please note that you can concatenate as many functions and key-path expressions together using the “|”
(PIPE) symbol. For more information, please refer to Using the Expression Builder.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 121 of 271

https://www.manula.com/manuals/siemplify/how-to/5.6.x/en/topic/using-expression-builder

2.5.2. Entities

Siemplify is heavily based on entities and many actions run iteratively over them or simply consider them as
input. Sometimes the input is explicit, like with a placeholder of type entity for example. Other times it is
implicit, using the action’s entity.

A straight forward example would be the enrichment type actions. These iterate over the entities and for
each entity it reaches out to a third party product and provides information on that entity (Usually as
properties on the entity object itself – Enrichment). Another example would be the response action. Let’s
say you want to quarantine a specific host, but you have two hosts in your alert. You will have to make sure
you pass the correct entity to the action that quarantines entities, so you quarantine the correct host.

Siemplify comes with a vast variety of different predefined scopes of entities. A small example can be seen
in the screenshot below.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 122 of 271

2.5.3. Conditions

The conditions allow you to direct your playbook in different directions depending on which criteria are met.
So for example, if you are evaluating whether an email is suspicious or not, a true would send you down one
path of further investigation and a false would send you down a path of closing the playbook. Without
conditions you could not implement real logic in your playbook.

Siemplify offers two types of conditions to be used in your design:
Multi Choice Question – Pose a question to the user and multiple options to choose from. This is used to
‘stop’ the automation and allow for the analyst to choose a specific route. The rest of the playbook could be
either manual or automatic.
Automatic Condition – Evaluate one or more statements and choose a route based on the results. The
structure of the statements resembles if/else-if/else structure. If the condition is NOT met, you attempt to
evaluate the next statement. The first one that is met will dictate the route that is going to be taken. If no
condition is met, the “Else” route is taken.

Both conditions will fork your playbook and allow for the execution of different flows. The only difference is
the evaluator of the condition. The Multi Choice Question is evaluated by a user, while the Automatic
Condition is evaluated by the Playbook service (Automatically).

Regardless of the condition you choose, the amount of actions or any other conditions you implemented,
you can always ‘merge’ branches back into a single branch. To do that simply drag the action you want to
be the first action of both branches into the last step of the branch you want to merge with.

Working with conditions in Siemplify (Automatic conditions) is very much similar to working with actions. You
are going to work closely with placeholders and entity Scope. As stated above, a condition in Siemplify
looks like a if/else-if/else statement. For each ‘if’ section you are required to specify a statement(s)
condition. For example, [Entity.is_suspicious] = True, then if we have an entity marked as suspicious, it is
evaluated as “True” and the corresponding branch is taken. It is highly unlikely that you will NOT use
placeholders in a conditional statement, so it is a good time to make sure you are familiar with placeholders
in Siemplify.

You should pay close attention to placeholders of type event/entity. These can be plural and thus cause
some issues with the planned evaluation of a condition. For instance, if you attempt to evaluate [Event.type]
equals “login” and you have multiple events, the placeholder will resolve to a comma separated string and
will never yield “True” as a result.

One more feature to consider in a condition is “Error Handling”. The next section deals with this in more
details, but you should always remember some actions might fail and you need to have a plan ‘B’ for that.
The condition step allows you to choose what happens in case of a failure of a previous action in the form of
a “fallback” branch. The logic is simple: If a dependency action (one that its placeholder is useג in the
condition) has failed, take that branch and continue. You can use this to your advantage by escalating these
alerts immediately, or by simply notifying your analysts about them.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 123 of 271

2.5.4. Error Handling

This section deals with how to handle errors that happen in playbook actions, and which might inherently
jeopardize the automation.

Siemplify offers a simple solution to this problem. Each action has a ‘toggle’ that dictates its behavior in
case of a failure. A failed action in Siemplify is essentially a flag to the server. It could be an unprotected
exception or a planned failure. In both cases, by default, the playbook service will stop the automation and
wait for manual input from the user. However, if you want the playbook to continue automatically, for
whatever reason, you can ‘switch’ the toggle off and prevent the playbook from waiting for input on failure of
action.

You should be cautious when you choose to do so, as some other actions/conditions might rely on the result
of the action (using placeholders for example). If the action is ‘essential’ to the playbooks flow, then you
might want to reconsider skipping it in case it fails.

Fortunately, condition steps allow for a very easy way to ‘catch’ those errors and offers you, the designer of
the automation, a way to overcome such issues with different logic. To do that all you have to do is set up a
‘fallback’ branch for a condition referring to the erroneous action. Let’s discuss an example. Say you want to
quarantine a host. This is, of course, a very sensitive action that must happen, otherwise you risk malware
expansion. If the action failed, it means there is a good chance the host was not quarantined. In this case, it
is reasonable that you don’t want to wait for an analyst to notice the failure, nor can you simply skip the
action and continue on with your life. What you should do is very simple! First, mark the action with the ‘skip
in case of failure’ flag. Then, put a condition referring to the action result (does not have to be a real
condition there, just the placeholder will do). Set the condition to fallback to one of the branches (depends
on your logic) in case there is an error in one of the dependencies. If you only set that ‘quarantine’ action’s
placeholder, it is essentially a test whether the action failed or not. Now, on the fallback branch, put the logic
you want to take when the quarantine fails (escalate, send messages, firewall rules etc.)

To sum up, we have two ways to deal with errors:
Hard: Action fails and playbook simply stops
Soft: Action skips. In this case we can separate it into two scenarios:

• Critical action – Need to introduce a condition to test whether the action failed and deal with it
logically

• Uncritical action – Can allow it to simply skip and continue automation
In general it is recommended that for each action you take the time to consider these options and
apply the correct piece of configuration to deal with it properly.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 124 of 271

2.5.5. Environments

This section is mainly relevant for MSSPs, but can be utilized by enterprises as well. In general, Siemplify
allows for data separation between ‘Environments’. Essentially, it means we have a complete separation
between cases, credentials and integration configurations. This allows for the adaptation of multiple
customers (Environment in Siemplify) to reside in the same Siemplify instance. Environments are also the
highest level of hierarchy in Siemplify’s data model

When designing a block (or playbook), you are likely to use it in multiple playbooks and environments.
Therefore it is recommended that you try and design the playbook block in a way that can be reused for as
many environments as possible. Siemplify supports configuration separation, and so you can configure
different setting components and different integrations with different values for each environment, and the
playbook service will know which one to run for you!

In addition, you can also utilize the Environment parameters. Siemplfiy has a predefined set of parameters,
to which you can add as many custom parameters as you wish. Each environment has these parameters
and you can configure them separately. In your block, you can use an Environment placeholder to refer to
these values, essentially allowing you to incorporate them in your logic.

Here’s an example. Let’s say you are an MSSP and you have many customers. Each customer has its own
ticketing system (obviously, many customers use the same product, so it’s not unique per customer). You
could add an Environment parameter called “TicketingSystem” and configure it with the ticketing system’s
name. In the block, add a condition before communicating with the relevant ticketing system. This allows
you to maintain a single block/playbook and offer the same protection to multiple customers.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 125 of 271

2.5.6. Insights

Playbooks and automation in general has two main purposes:
Take action: You want some things to get done without intervention and as soon as possible.
Collect data for user: Help speed up investigation and allow for a more complete picture of the incident
with minimal human effort (for investigation and human decision)

It is very easy to understand how automation solves the first issue. To help with the second issue you can
use the “Insights”. Basically insights are a piece of text (can be HTML as well) that is presented on the case
overview as the first thing you see when you open the case. A good playbook will expose the most
important/relevant information to the case overview for the user to observe (be it actions that were taken
and the user should be aware or some important information).

There are two types of insights in Siemplify, the ‘General’ insight and the ‘Entity’ insight. Both will appear in
the same place. The difference is just the ‘object’ to which they are tied to. Entity insight is related to an
entity and will usually be added to the case overview by enrichment actions. Siemplify “Insights” integration
allows you to create complicated entity insights on your own as well. And, of course, you can write your own
actions to create entity insights (see our SDK documentation). The general insight is a little more
straightforward. You give it a text and it dumps it to the case overview, as is.

You should take a look at the “Insights” integration (power-up) and its documentation to better understand
your options and how it is recommended to create insights using Jinja2.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 126 of 271

2.5.7. Simulate Alerts

Siemplify offers a very easy way to test how certain configuration changes and playbook are going to affect
real data. If you want to run tests, but you do not want these tests to reflect in your metrics/dashboards, all
you need to do is simply ‘simulate’ an alert. Find that one alert you want to test with, hover over it and click
the three dots menu. Select the “Simulate Alert” and choose an environment. A new (test) alert will be
created for you, that will behave almost identically to a real alert. You can test playbooks and configurations
on that alert, and simply close it afterwards, without affecting any other module.

Please note that actions you run on the simulated alert run for REAL. That means that if you choose to send
an email, or quarantine a machine, this is actually going to happen. So please be cautious when running
playbooks in general, but especially when you run tests.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 127 of 271

2.5.8. How Playbooks work behind the scenes

There are two services responsible for playbook automation: Playbook service and Python service. The
Python service actually serves all automation services in Siemplify. This is the service that executes the
Python scripts and communicates with them to receive the results. The playbook service is responsible for
the playbook actions (regular and async) and maintaining the action queue.

The playbook service has a limit of how many actions/flows it can run in parallel, which means that if you
run a long action, or simply many many actions, you might quickly reach that limit and bottleneck the whole
process. Fortunately, Siemplify has logic to alleviate such stress for some cases (not going to happen if you
simply have too many actions)

If you encounter bottlenecks in your playbooks, be it a slow running playbook, or an overall long queue, you
should consult Siemplify support. However, there are a few things you can do on your own. First, make sure
that you don’t run irrelevant action or use irrelevant scope for actions that run on entities. This will simply
reduce the load. Next, if you run slow and long async actions, try to initiate the action at the beginning of the
playbook, and wait for the result at the end. You could add more DPUs with Siemplify’s help, if you expect
high loads, or simply know to expect some slowdown on spikes of alerts. Depending on the available
resources, you could also increase the amount of parallel playbooks.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 128 of 271

3. Siemplify API

Click Siemplify API to see a full list of Siemplify API documentation.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 129 of 271

https://api.siemplify.co/

4. SDK References

Siemplify’s SDK was designed to help developers communicate and utilize various API functionalities. The
SDK can be used from Siemplify’s IDE in one of the three object types available in Siemplify:

• Actions
Actions are “stand alone” Python scripts that can be called, like functions, from either a playbook or
manually by a user. A SiemplifyAction has (dynamic – based on alert data) data and configuration/
parameters as input, and either returns a value or performs an action (or both).

• Connectors
Connectors are time-based Python scripts that run every predefined time interval with the purpose of
creating new alerts in Siemplify (Ingesting new data). In principle, a connector is compared with a
class in Python, as you create its definition once, but you can then instantiate multiple instances that
can co-exist. A connector has only parameters as input, and nothing is dynamic (unless expressed in
the logic).

• Jobs
Jobs are time-based Python scripts that run every predefined time interval. The difference between
jobs and connectors is mainly their purpose. Connectors are responsible for creating new alerts in
Siemplify, whereas jobs are usually used to sync data or maintenance.

The three objects above represent three types of automation (based on Python) that Siemplify utilizes and
are presented in more detail in the next sections.
These 3 objects inherit from a more generic wrapper to Siemplify’s API: “siemplify” and “siemplifybase”

NOTE: When using the SDK (from Siemplify’s IDE), there is no need for authentication. The SDK itself is
responsible for authentication.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 130 of 271

4.1. Concepts & Tutorials

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 131 of 271

4.1.1. Actions

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 132 of 271

4.1.1.1. Action Results

Action results are viewable from an action context details, or case wall by clicking on the action block/entry
and observing its results.

URL Links

Add a clickable link to the action result under a specific title (Usually the entity’s identifier).
Here’s an example of a link added to the action result:

A common usage for this function is to display a link to a sandbox report or to an external service, where the
analyst can watch a full report (Like VirusTotal or Cuckoo). However, you can also use this function to
trigger a get request on one of your services, forcing the analyst to use specific parameters.

Data Tables

You can add a table display to the action result. This table, in turn, can be exported into a CSV that is
downloaded to the local machine of the user.
Here’s how it looks in Siemplify:

To expand the result, simply click on the square with the arrow on the top right corner of table view. This
pop-up will appear:

Related Methods: ScriptResult.add_link*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 133 of 271

You can export this table to a CSV from this pop-up

Json Results

You can add a JSON result, and view it in the system A common use for this function is displaying return
values from API calls. Most third party integrations (and Siemplify’s API) return a JSON object when called.

Here’s an example for a JSON viewer in Siemplify (As an action result)

Related Methods: ScriptResult.add_data_table*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 134 of 271

https://en.wikipedia.org/wiki/JSON

To expand the result, simply click on the square with the arrow on the top right corner of table view. This
pop-up will appear:

Attachments

You can add an attachment to the Action Result. The attachment will be displayed like an attached link or a
table. Below is an image with example:

Related Methods: ScriptResult.add_json*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 135 of 271

Here we have two HTML reports, one for each IP address. Clicking the link will download the HTML report
to the local system of the user.

Related Methods: ScriptResult.add_attachment*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 136 of 271

4.1.2. Integration Configuration & Script Parameters

Integration Configuration

Usually, each Integration will have Several configuration that needs to be set by the user, and used by the
code.
The Configuration can be set by the user via the Marketplace screen, by clicking on the “Cog” icon on each
installed integration card.

Script Parameters

Usually, each Action\Job\Connector script will require additional parameters, configured per Instance.
This can be configured by the Connectors screen, Jobs Screen, Playbook Screen, IDE Screen, or Manual
Action Screen.

Related Methods: Siemplify.extract_configuration_param, SiemplifyAction.get_configuration*
It is advised to use the “extract_configuration_param” params, and not the raw
“get_configuration” method

!

Related Methods: SiemplifyJob.extract_job_param, SiemplifyAction.extract_action_param,
SiemplifyConnectorExecution.extract_connector_param*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 137 of 271

4.1.2.1. External Configuration Providers

In the UI, when configuring an integration parameter, it is possible to input a placeholder that, on script
runtime, will fetch the actual value, from an external source – usually a Credentials Vault Provider.

This is useful for:

• Dynamic changing credentials
• Organizations where the credentials are stored in a vault

For example:
Instead of placing Static credentials

you can place

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 138 of 271

This will indicate to the siemplify system, to fetch the password param value from: a CyberarkVault provider
(authenticate with pre-configured CyberArkVault integrations credentials), and fetch the value from the
property “my_key” under “safe1”, “folder1”, “account1” and place it as the actual value of the Integration’s
param “Password”

—-

PlaceHolder Format:
[x1:::x2:::x3:::x4…]

• The external credentials provider format is a list of parameters, separated by “:::” inside Brackets.
(There could be any number of params, as needed by the specific provider.)

• The first param (ie x1) is the provider name:

1. Indicates the name of the external provider. The external provider will implement the fetching of the
external data. It must be a Siemplify Integration, ie: CyberArkVault. The name must match an
installed Marketplace integration.

2. This integration must have a module, with a class, with a method called “get_config_siemplify” with
the following signature:

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 139 of 271

3. The name of the module + class, must be stated in file “…\Bin\Scripting\PythonSDK\
external_providers.json”

IE:

x2 to x4 and get_config_siemplify implementation:

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 140 of 271

1. config_phrase = The original placeholder as inputted by the user, without the brackets or the first
param (x1, aka external provider name), meaning “x2:::x3:::x4”. So in our case
“safe1:::folder1:::acount1:::my_key”

2. **kwargs = the current integration (of the external provider) configuration, as configured and saved in
Siemplify (via the Marketplace UI)

3. In this example code, you can see the kwargs are used to define a 3rd party wrapper called cls, by
which the “get_account_by_name” is called with provided safe, folder, account_name needed in order
to fetch the actual value. Then, the result is sanitized to password values, and finally, the value it self
is returned.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 141 of 271

4.1.3. Custom Lists

The custom list is just a list of objects, that can be saved into Siemplify’s DBs, as a shared resource,
fetched and queried by each script execution instance.
The custom list can be edited in settings screen’s UI. This section deals with SDK functionalities for custom
lists

Custom List item structure:
This object is defined in the SiemplifyDataModel.py
Param
Name

Param
Type

Possible Values

identifier string
Any identifier whatsoever. Usually this identifier represents a possible entity in
future alerts

category string Category from the Siemplify settings

environment string Environment name from the Siemplify settings. “*” refers to all environments

To create a CustomList object, do the following:

from SiemplifyAction import SiemplifyAction
from SiemplifyDataModel import CustomList
custom_list = CustomList(identifier="1.2.3.4", category="WhiteListed HOSTs", envi
ronment="")

When referring to the CustomList object in the future, this is its structure. Below, we can see an example of
a single object in the settings screen. Every line represents a single CustomList object.

Related Methods: Siemplify.add_entities_to_custom_list,
Siemplify.any_entity_in_custom_list, Siemplify.remove_entities_from_custom_list,
Siemplify.get_existing_custom_list_categories, Siemplify.is_existing_category,
Siemplify._get_custom_list_items

*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 142 of 271

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 143 of 271

4.1.4. Case Manipulation

This section focuses on SDK functions that help manipulate a case’s state and data.

Name Siemplify SiemplifyAction Description

close_case NA close_case
Closes the current case with the selected close
reason and given comment

add_comment add_comment add_comment
Adds a comment to the current case’s case
wall

close_alert NA close_alert
Closes the current alert with the selected close
reason and given comment

raise_incident raise_incident raise_incident Changes the current case into an incident

assign_case assign_case assign_case
Assigns the current case to the selected
analyst or group

add_entity_to_case add_entity_to_case add_entity_to_case Creates a new entity in the case

add_attachment add_attachment add_attachment Adds attachment to the case.

Case Metadata

This section focuses on SDK functions that manipulate case index and help maintain the system. Functions
in this section are used to produce better search mechanism, KPIs and filters.

Methods:

Name Siemplify SiemplifyAction Description

add_tag NA add_tag
Adds a new tag to the current
case

change_case_stage NA change_case_stage
Sets the current case’s stage
to a specific stage

change_case_priority change_case_priority change_case_priority
Sets the current case’s
priority to a specific value

mark_case_as_important mark_case_as_important mark_case_as_important
Marks the current case with
the ‘importance triangle’ sign

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 144 of 271

Data Retrieval

Name Siemplify SiemplifyAction

get_case_comments get_case_comments get_case_comments

get_alerts_ticket_ids_from_cases_closed_since_timestamp NA get_alerts_ticket_ids_from_cases_closed_since_timestamp

get_similar_cases NA get_similar_cases

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 145 of 271

4.1.4.1. Insights (General/Entity)

In Siemplify, insights are used to highlight important information that collected in the playbooks by various
actions. For example, you might run a Threat Intelligence action to find out more information about a
specific hash. The results can be seen in the case wall or the action results of the relevant action. However,
if the report indicates that there is something malicious, you might want to expose the data to the Analyst
outright, without further digging. This is easily done with insights.
An other example might be key enrichment values, such as ActiveDirectory’s department enrichment, the
amount of users that received a potentially malicious email, etc.

Here’s an example of various insights:

In Siemplify, there are two types of insights:

• General insight
• Entity insight

The different between the insights’ types is whether or not they revolve around entities. The middle insight in
the picture is the only entity insight in the image, and it can be clearly seen what entity it refers to.

General Insight

Related Methods: create_case_insight*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 146 of 271

Entity Insight

Related Methods: add_entity_insight*
Note that this action creates a different insight for each entity in the action’s scope.!

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 147 of 271

4.2. API

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 148 of 271

4.2.1. SiemplifyBase (SiemplifyBase.py)

SiemplifyBase class is never used directly. All three of Siemplify’s main SDK classes are inherited from
SiemplifyBase, so any function/property you see in this section is to be used from the main Siemplify SDK
component (SiemplifyAction, SiemplifyJob and SiemplifyConnectorExecution)

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 149 of 271

4.2.1.1. fetch_timestamp

This function returns the timestamp.

fetch_timestamp(datetime_format=False, timezone=False)

Parameters:

Param Name
Param
Type

Possible
Values

Comments
Mandatory
Parameter

datetime_format boolean
True/
False

True will return the datetime after converting the
unixtime and False will simply return the datetime

No

timezone boolean
True/
False

If True, siemplify will convert the time zone. [Not
supported for DST]

No

Return Type

Datetime/int

Example:

Sample Code

from SiemplifyAction import SiemplifyAction
sa = SiemplifyAction()
result = sa.fetch_timestamp(datetime_format=True, timezone=False)

Result Behavior

The latest timestamp is fetched and is saved as TIMESTAMP file in the current dir
ectory.

Result Value

datetime.datetime(2019, 7, 16, 14, 26, 2, 26000)/1563276380

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 150 of 271

4.2.1.2. save_timestamp

This function saves the timestamp.

save_timestamp(self, datetime_format=False, timezone=False, new_timestamp=Siempli
fyUtils.unix_now())

Parameters:

Param Name
Param
Type

Possible
Values

Comments
Mandatory
Parameter

datetime_format boolean
True/
False

True will return the datetime after converting the
unixtime and False will simply return the datetime

No

timezone boolean
True/
False

If True, siemplify will convert the time zone. [Not
supported for DST]

No

new_timestamp long datetime New timestamp as datetime to be saved. No

Return Type

NoneType

Example:

Sample Code

from SiemplifyAction import SiemplifyAction
sa = SiemplifyAction()
sa.save_timestamp(self, datetime_format=False, timezone=False, new_timestamp=Siem
plifyUtils.unix_now())

Result Behavior

New timestamp will be saved as TIMESTAMP file in the current directory.

Result Value

None

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 151 of 271

4.2.1.3. fetch_and_save_timestamp

This function fetches the timestamp and saves the new timestamp to TIMESTAMP file in the current
directory.

fetch_and_save_timestamp(self, datetime_format=False, timezone=False, new_timesta
mp=SiemplifyUtils.unix_now())

Parameters:

Param Name
Param
Type

Possible
Values

Comments
Mandatory
Parameter

datetime_format boolean
True/
False

True will return the datetime after converting the
unixtime and False will simply return the datetime

No

timezone boolean
True/
False

If True, siemplify will convert the time zone. [Not
supported for DST]

No

new_timestamp long datetime
New timestamp as datetime to be saved. The default
timestamp is the current time.

No

Return Type

Datetime/int

Example:

Sample Code

from SiemplifyAction import SiemplifyAction
sa = SiemplifyAction()
sa.fetch_and_save_timestamp(self, datetime_format=False, timezone=False, new_time
stamp=SiemplifyUtils.unix_now())

Result Behavior

The latest timestamp is fetched and is saved as TIMESTAMP file in the current dir
ectory.

Result Value

datetime.datetime(2019, 7, 16, 14, 26, 2, 26000)/1563276380

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 152 of 271

4.2.1.4. run_folder

This property returns the run folder based on the script name provided.
This folder can be used to store data\resources between script executions of the same script type.

run_folder()

Parameters:

N/A

Return Type

String

Example:

Sample Code

from SiemplifyAction import SiemplifyAction
sa = SiemplifyAction()
sa.script_name("VirusTotal")
sa.run_folder()

Result Behavior

Folder named "VirusTotal" will be created and full path will be returned.

Result Value

jobs - /opt/siemplify/siemplify_server/Scripting/SiemplifyJob/{job_name}
actions - /opt/siemplify/siemplify_server/Scripting/SiemplifyAction/{action_name}
connectors - /opt/siemplify/siemplify_server/Scripting/SiemplifyConnectorExecutio
n/{connector_name}

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 153 of 271

4.2.2. Siemplify (Siemplify.py)

The Siemplify object inherits its properties from the SiemplifyBase object and provides functionality for
SiemplifyAction and SiemplifyJob.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 154 of 271

4.2.2.1. add_Attachment

This function adds an entry to the case wall with a file attachment (that can be then downloaded from the
client into the user’s local machine). The function does essentially the same thing as adding evidence (on
the bottom of the case overview screen).
NOTE: To be able to upload a file to the case wall, you need to have the file available in the file system of
the Siemplify server, or have it on a shared location accessible from the Siemplify server.

Here’s a usage example:

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
siemplify.add_attachment(r'C:/temp/investigation.txt', description='Deep investig
ation report by TIER3 team', is_favorite=True)

In this example, we will upload the “investigation.txt” from “C:/temp” on the local machine (the Siemplify
server itself) to the case wall. A comment will be added to that entry on the case wall, with the string in the
description. The “is_favorite” flag was set to “True”, and so this new entry will also be starred (favorite).

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

file_path string Any accessible file path
File path could be a remote location
as well. You need read permissions
to that file

Yes

case_id string
A case ID to add the attachment
to its case wall

The default is the current case Yes

alert_identifier string
Alert identifier string of the alert
you want to associate the
attachment with

The default is the current running
alert

No

description string Any string
Default is empty string – Empty
message with the attachment on the
case wall

No

is_favorite Boolean True/False Default is False No

Related Concepts: Case Manipulation*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 155 of 271

4.2.2.2. add_comment

This function adds a comment to the selected case.

siemplify.add_comment(comment, case_id, alert_identifier)

Parameters

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

comment string
“This events in this alert seems
suspicious”

Comments related to
the case

Yes

case_id string 234
Unique Case
Identifier

Yes

alert_identifier string ad6879f1-b72d-419f-990c-011a2526b16d N/A Yes

Return Type

NoneType

Example

Sample code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
add_comment = "This alert is important"
alert_identifier = "ad6879f1-b72d-419f-990c-011a2526b16d"
case_id = "234"
siemplify.add_comment(comment, case_id, alert_identifier)

Result Behavior

The provided comment gets added to the case 234.

Related Concepts: Case Manipulation*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 156 of 271

Result Value

None

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 157 of 271

4.2.2.3. add_entity_insight

This function adds entity insight to the selected entity identifier of the alert.

siemplify.add_entity_insight(domain_entity_info, message, case_id, alert_id)

Parameters

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

domain_entity_info string “8.8.8.8” entity identifier Yes

message string “This is Google DNS”
Message to add in
the entity insight.

Yes

case_id string 234
Unique Case
Identifier

Yes

alert_identifier string ad6879f1-b72d-419f-990c-011a2526b16d N/A Yes

Return Type

Boolean

Example

Sample code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
entity = "8.8.8.8"
alert_identifier = "ad6879f1-b72d-419f-990c-011a2526b16d"
case_id = "234"
siemplify.add_entity_insight(domain_entity_info=entity, message=message, case_i
d=case_id, alert_id=alert_identifier)

Result Behavior

The given message gets added as insight to the entity 8.8.8.8 of the given alert

Related Concepts: Insights*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 158 of 271

identifier in the case 234.

Result Value

True [False if the insight is not added]

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 159 of 271

4.2.2.4. add_entity_to_case

This function adds entity insight to the selected entity identifier of the alert.

siemplify.add_entity_to_case(case_id, alert_identifier, entity_identifier, entit
y_type, is_internal, is_suspicious, is_enriched, is_vulnerable, properties, envir
onment)

Parameters

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

case_id string 234 Unique Case Identifier Yes

alert_identifier string ad6879f1-b72d-419f-990c-011a2526b16d N/A Yes

entity_identifier string “8.8.8.8” Unique entity Identifier Yes

entity_type string “ADDRESS”
Entity type of the entity
identifier.

Yes

is_internal boolean True/False
Internal: True, External:
False

Yes

is_suspicious boolean True/False
suspicious: True, not
suspicious: False

Yes

is_enriched boolean True/False
enriched: True, not
enriched: False. Default is
False.

Yes

is_vulnerable boolean True/False
vulnerable: True, not
vulnerable: False. Default
is False.

Yes

properties dict {“property”:“value”} Property of the entity. Yes

environment string “Siemplify”
One of the defined
environments in
Siemplify.

Yes

Related Concepts: Case Manipulation*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 160 of 271

Return Type

NoneType

Example

Sample code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
case_id = "234"
alert_identifier = "ad6879f1-b72d-419f-990c-011a2526b16d"
entity = "8.8.8.8"
entity_type = "ADDRESS"
properties = {"property": "value"}
siemplify.add_entity_to_case(case_id=case_id,

alert_identifier = alert_identifier,
entity_identifier = entity,
entity_type = entity_type,
is_internal = True,
is_suspicious = False,
is_enriched = False,
is_vulnerable = False,
properties = properties,
environment=None)

Result Behavior

The entity with the provided information will be added to given alert with in th
e case 234.

Result Value

None

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 161 of 271

4.2.2.5. add_entities_to_custom_list

This function gets a list of CustomList objects, representing lines in the CustomList settings table, and adds
them to the table.
Each parameter should be explicitly specified – identifier, category and environment (all strings).

result = siemplify.add_entities_to_custom_list([custom_list])

Parameters

Param Name Param Type Possible Values Comments Mandatory Parameter

category_name string “custom_list” the custom list category Yes

Return Type

List

Example:

Here’s an example. Lets assume this is the state of the CustomList table prior to the function call:

Running add_entities_to_custom_list will result in a list of “CustomList” objects that represent configuration
changes in the settings (added lines). Running the following code we get:

Sample Code

from SiemplifyAction import SiemplifyAction

Related Concepts: Custom Lists*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 162 of 271

from SiemplifyDataModel import CustomList
custom_list = CustomList(identifier="GOOGLE.COM", category="WhiteListed HOSTs", e
nvironment="")

siemplify = SiemplifyAction()
result = siemplify.add_entities_to_custom_list([custom_list])

Result Behavior

Entity is added to custom list category "WhiteListed HOSTs".

Result Value

[]

You can add multiple values from the CustomList or manipulate multiple lists with the same
call. Simply add more CustomList objects to the list (each can have its own identifier,
category and environment)
*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 163 of 271

4.2.2.5.1. extract_configuration_param

Get the value of an integration configuration parameter. Each integration has parameters that are part of its
configuration (configured in the marketplace). This method allows extracting the value of a selected
parameter from the integration’s currently saved configurations.

param_value= siemplify.extract_configuration_param(
provider_name,
param_name,
default_value=None,
input_type=str,
is_mandatory=False,
print_value=False)

Parameters:

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

provider_name string
Any of the integration
names in the
marketplace

The name of the integration to get the
parameter from its configuration

Yes

param_name string

Any of the
parameters names
available in the
integration’s
configuration

The name of the parameter to fetch Yes

default_value Any desired value

The default value of the parameter. The given
value will be returned if the parameter was not
set (if is_mandatory is set to False). Defaults
to None.

No

input_type Any valid python type
The type of the parameter. The returned value
will be cast to the selected input type. Defaults
to str.

No

is_mandatory boolean True/False
Whether the parameter is mandatory. If set to
True and the parameter was not filled, an
exception will be raised. Default to False.

No

Related Concepts: Integration Configuration & Script Parameters*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 164 of 271

print_value boolean True/False
Whether to output the fetched value of the
parameter to the logs. Default to False.

No

Return Type

As passed in input_type

Sample Code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
param_value= siemplify.extract_configuration_param(

"VirusTotal",
"Api Key",
default_value=None,
input_type=str,
is_mandatory=True,
print_value=False)

Result Behavior

The value of the selected parameter will be returned, casted to selected type.

Result Value

123456

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 165 of 271

4.2.2.6. any_entity_in_custom_list

Given a list of CustomList objects that represent lines from the CustomList settings, and returns True
(Boolean) if any of them exists in the settings table. Otherwise, returns False (Boolean)
Each parameter should be explicitly specified – identifier, category and environment (all strings).

result_1 = siemplify.any_entity_in_custom_list([custom_list_1])

Parameters:

Param Name Param Type Possible Values Comments Mandatory Parameter

category_name List “CustomList” the custom list category Yes

Return Type

Boolean

Example:

Here’s an example. Below, the state of the system is presented:

Sample Code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
custom_list_1 = CustomList(identifier="GOOGLE.COM", category="WhiteListed HOST
s", environment="")
custom_list_2 = CustomList(identifier="GOOGLE.COM", category="WhiteListed HOST
s", environment="Other_Environment")
custom_list_3 = CustomList(identifier="GOOGLE.COM", category="BlackListed HOST
s", environment="")
result_1 = siemplify.any_entity_in_custom_list([custom_list_1]) # True
result_2 = siemplify.any_entity_in_custom_list([custom_list_2]) # False
result_3 = siemplify.any_entity_in_custom_list([custom_list_3]) # False

Result Behavior

In this example, _result_1_ equals True. _result_2_ and _result_3_ are False com

Related Concepts: Custom Lists*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 166 of 271

paring to the system's state below.

System’s state

Result Value

True/False

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 167 of 271

4.2.2.7. assign_case

This function marks the current case with given alert identifier as important.

siemplify.assign_case(user, case_id, alert_identifier)

Parameters

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

assign_case string admin/@Teir1
Usernames such as “admin”
or roles such as “@Tier1”

Yes

case_id string 234 Unique Case Identifier Yes

alert_identifier string ad6879f1-b72d-419f-990c-011a2526b16d N/A Yes

Return Type

NoneType

Example

Sample code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
user = "admin"
alert_identifier = "ad6879f1-b72d-419f-990c-011a2526b16d"
case_id = "234"
siemplify.assign_case(user=user, case_id=case_id, alert_identifier=alert_identifi
er)

Result Behavior

The case 234 gets assigned to *admin*.

Related Concepts: Case Manipulation*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 168 of 271

Result Value

None

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 169 of 271

4.2.2.8. attach_workflow_to_case

This function attaches the workflow to current case.

siemplify.attach_workflow_to_case(workflow_name, cyber_case_id, indicator_identif
ier)

Parameters

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

workflow_name string workflow name N/A Yes

cyber_case_id string 234 Unique case id Yes

indicator_identifier string ad6879f1-b72d-419f-990c-011a2526b16d
Unique alert
identifier

Yes

Return Type

NoneType

Example

Sample code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
alert_identifier = "ad6879f1-b72d-419f-990c-011a2526b16d "
case_id = "234"
workflow_name = "Workflow 234"
siemplify.attach_workflow_to_case((workflow_name=workflow_name, cyber_case_id=cas
e_id, indicator_identifier=alert_identifier)

Result Behavior

Workflow 234 will be attached to case 234.

Result Value

None

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 170 of 271

4.2.2.9. change_case_priority

This function changes case priority.

siemplify.change_case_priority(priority, case_id, alert_identifier)

Parameters

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

priority int 40/60/80/100
The priority mapping:
{“Low”: 40, “Medium”: 60,
“High”: 80, “Critical”: 100}

Yes

case_id string 234 Unique Case Identifier Yes

alert_identifier string ad6879f1-b72d-419f-990c-011a2526b16d N/A Yes

Return Type

NoneType

Example

Sample code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
priority = 40
alert_identifier = "ad6879f1-b72d-419f-990c-011a2526b16d"
case_id = "234"
siemplify.change_case_priority(priority=priority, case_id=case_id, alert_identifi
er=alert_identifier)

Result Behavior

The case 234 priority gets changed to 40, which is mapped to low.

Related Concepts: Case Manipulation*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 171 of 271

Result Value

None

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 172 of 271

4.2.2.10. create_case

This function creates Siemplify case with the alerts and events contained in the case_info dictionary

siemplify.create_case(case_info)

Parameters

Param
Name

Param
Type

Possible
Values

Comments
Mandatory
Parameter

case_info dict
See
example.

The details of the case to create. The dictionary keys
must be in snake case.

Yes

Return Type

NoneType

Example

Sample code

Example code

Result Behavior

The case with the provided case data is created.

Result Value

None

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 173 of 271

https://cdn.manula.com/user/14758/docs/samplecodeexamplecreate-case.txt

4.2.2.11. end

This function ends the Siemplify action and sends the action results to the Siemplify system. This method is
halting the action process, so no other code after the end() function will be executed.

end(output_message, result_value)

Parameters

Param Name
Param
Type

Possible
Values

Comments
Mandatory
Parameter

output_message string
Action
completed

The message that will be displayed in Siemplify. Yes

result_value

The result value of the action (to be later used in other
actions playbooks). For example, if an action is listing the
users in Active Directory, then the action result might be
the number of users found. Usually a boolean value will
be passed, indicating whether the action succeeded or
not.

Yes

execution_state int 0/1/2/3

Indicator for the current action’s state, 0 = completed, 1 =
in progress, 2 = failed, 3 = timed out (states can be found
in ScriptResult module). Mainly used in async actions for
marking whether the action has completed or not. Default
to 0

No

Return Value

None

Errors

If the end function is not called, the script will throw the following error.

Script did not return expected data. Did you call build_result/end_script?
Check DebugOutput for details

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 174 of 271

Example

Sample code

from SiemplifyAction import SiemplifyAction
from ScriptResult import EXECUTION_STATE_COMPLETED
siemplify = SiemplifyAction()
output_message = "Display message when action is done."
result_value = True
siemplify.end(output_message, result_value, EXECUTION_STATE_COMPLETED)

Result

output_message

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 175 of 271

4.2.2.12. end_script

This function is deprecated.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 176 of 271

4.2.2.13. get_case_comments

This function gets the comments from the provided case.

get_case_comments(case_id)

Parameters

Param Name Param Type Possible Values Comments Mandatory Parameter

case_id string 12314 Unique case id No

Return Type

List

Example

Sample code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
siemplify.get_case_comments(case_id)

Result Behavior

All comments belonging to case will be fetched.

Result Value

[
{

u 'comment': u 'Test',
u 'case_id': 10085,
u 'is_favorite': False,
u 'alert_identifier': None,
u 'creator_user_id': u 'Admin',
u 'type': 5,

Related Concepts: Case Manipulation*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 177 of 271

u 'id': 1,
u 'modification_time_unix_time_in_ms': 1563272078332L

}, {
u 'comment': u 'jhfksdh',
u 'case_id': 10085,
u 'is_favorite': False,
u 'alert_identifier': None,
u 'creator_user_id': u 'Admin',
u 'type': 5,
u 'id': 2,
u 'modification_time_unix_time_in_ms': 1563272079941L

}, {
u 'comment': u 'kjfhsdm',
u 'case_id': 10085,
u 'is_favorite': False,
u 'alert_identifier': None,
u 'creator_user_id': u 'Admin',
u 'type': 5,
u 'id': 3,
u 'modification_time_unix_time_in_ms': 1563272080598L

}
]

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 178 of 271

4.2.2.14. get_existing_custom_list_categories

This function returns a list object of all the categories in the CustomList settings irrespective of
Environments. It simply returns all the values available.

result = siemplify.get_existing_custom_list_categories()

Parameters

N/A

Return Type

List

Example:

Sample Code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
result = siemplify.get_existing_custom_list_categories()

Result Behavior

A list of all exisiting custom list is returned.

System’s state

Related Concepts: Custom Lists*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 179 of 271

Result Value

["BlackListed IPs", "WhiteListed HOSTs"]

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 180 of 271

4.2.2.15. is_existing_category

Given a category name, this function returns True (Boolean) if the exact category name string is defined as
a category in the CustomList settings.
This function does not take Environment into account – It simply returns True if it exists at all, otherwise,
False.

siemplify.is_existing_category("WhiteListed HOSTs")

Parameters

Param Name Param Type Possible Values Comments Mandatory Parameter

category string “BlackListed IPs” the custom list category Yes

Return Type

Boolean

Example:

Sample Code 1

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
result = siemplify.is_existing_category("WhiteListed HOSTs")

Sample Code 2

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
result = siemplify.is_existing_category("SpecialHosts")

Result Behavior

The result in Sample Code 1 returns True and result in the Sample Code 2 returns
False.

Related Concepts: Custom Lists*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 181 of 271

System’s state

Result Value

True/False

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 182 of 271

4.2.2.16. mark_case_as_important

This function marks the current case with given alert identifier as important.

siemplify.mark_case_as_important(case_id, alert_identifier)

Parameters

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

case_id string 234
Unique Case
Identifier

Yes

alert_identifier string ad6879f1-b72d-419f-990c-011a2526b16d N/A Yes

Return Type

NoneType

Example

Sample code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
alert_identifier = "ad6879f1-b72d-419f-990c-011a2526b16d"
case_id = "234"
siemplify.mark_case_as_important(case_id=case_id, alert_identifier=alert_identifi
er)

Result Behavior

The case with the provided alert identifier will be marked as important.

Result Value

None

Related Concepts: Case Manipulation*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 183 of 271

4.2.2.17. raise_incident

This function raises the given case with the alert identifier as incident.

siemplify.raise_incident(case_id, alert_identifier)

Parameters

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

case_id string 234
Unique Case
Identifier

Yes

alert_identifier string ad6879f1-b72d-419f-990c-011a2526b16d N/A Yes

Return Type

NoneType

Example

Sample code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
alert_identifier = "ad6879f1-b72d-419f-990c-011a2526b16d"
case_id = "234"
siemplify.raise_incident(case_id=case_id, alert_identifier=alert_identifier)

Result Behavior

The case 234 will be raised as incident.

Result Value

None

Related Concepts: Case Manipulation*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 184 of 271

4.2.2.18. remove_entities_from_custom_list

This function gets a list of CustomList objects, representing lines in the CustomList settings table, and
removes them from the table.
Each parameter should be explicitly specified – identifier, category and environment (all strings).

result = siemplify.remove_entities_from_custom_list([custom_list])

Parameters

Param Name Param Type Possible Values Comments Mandatory Parameter

category_name string the custom list category Yes

Return Type

List

Example:

Here’s an example. Let’s assume this is the state of the CustomList table prior to the function call:

Running remove_entities_from_custom_list will result in a list of “CustomList” objects that represent
configuration changes in the settings (removed lines). Running the following code we get:

Sample Code

from SiemplifyAction import SiemplifyAction

Related Concepts: Custom Lists*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 185 of 271

from SiemplifyDataModel import CustomList
custom_list = CustomList(identifier="GOOGLE.COM", category="WhiteListed HOSTs", e
nvironment="")

siemplify = SiemplifyAction()
result = siemplify.remove_entities_from_custom_list([custom_list])

Result Behavior

The custom category "WhiteListed HOSTs" is removed.

Result Value

[]

You can remove multiple values from the CustomList or manipulate multiple lists with the
same call. You can add more CustomList objects to the list (each can have its own
identifier, category and environment)
*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 186 of 271

4.2.2.19. update_entities

This function adds the new entities to the alert.

siemplify.update_entities(updated_entities)

Parameters

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

updated_entities list
[“GOOGLE.COM”,
“8.8.8.8”]

List of entities to add to the
case.

Yes

Return Type

NoneType

Example

Sample code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
new_entities = ["GOOGLE.COM", "1.2.3.4"]
siemplify.update_entities(updated_entities=new_entities)

Result Behavior

The selected alerts via the scope gets new entities added if they are not presen
t in the alert.

Result Value

None

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 187 of 271

4.2.3. SiemplifyAction (SiemplifyAction.py)

The SiemplifyAction object inherits its properties from the Siemplify object, which inherits its properties from
the SiemplifyBase object.
SiemplyBase = Grandfather
Siemplify = Father
SiemplifyAction = Child

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 188 of 271

4.2.3.1. add_attachment

This function gets a list of custom list items from category and entities list. This function returns a list of
custom list item objects.

result = siemplify.add_attachment(file_path, case_id, alert_identifier, descripti
on, is_favorite)

Parameters:

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

file_path string
“C:\Program Files (x86)\Google\Chrome\
Application\chrome_proxy.exe”

Yes

case_id string 234
Unique case
id

No

alert_identifier string 12345
Unique alert
identifier.

No

description string “The description for the file” No

is_favorite boolean True/False No

Return Type

String

Example:

Input: Explicitly, File path, description and is_favorite. Implicitly, case_id and alert_identifier.

Sample Code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
result = siemplify.add_attachment("C:\Program Files (x86)\Google\Chrome\Applicati
on\chrome_proxy.exe", case_id="234", alert_identifier=None, description=None, i
s_favorite=True)

Related Concepts: Case Manipulation*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 189 of 271

Result Behavior

The file mentioned in the file path will be attached to case id 234 and attachmen
t id will be returned.

Result Value

5 [The attachment id]

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 190 of 271

4.2.3.2. add_comment

This function adds a comment to the current case’s case-wall. This function does the same thing as a user
typing down a comment and saving it on the case wall.

siemplify.add_comment(comment=comment)

Parameters

Param Name Param Type Possible Values Comments Mandatory Parameter

comment string Any string could be used here Yes

case_id string 12345 Unique case identifier. No

alert_identifier string 12345 Unique alert identifier. No

Return Type

NoneType

Example:

Sample Code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
comment = "Ran some tests on the hash and it seems fine"
siemplify.add_comment(comment=comment)

Result Behavior

The specified comment is added to the current case.

Result Value

None

Related Concepts: Case Manipulation*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 191 of 271

4.2.3.3. add_entity_to_case

This function adds an entity to the case.

add_entity_to_case(entity_identifier, entity_type, is_internal, is_suspicous, i
s_enriched, is_vulnerable, properties, case_id, alert_identifier, environment)

Parameters

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

entity_identifier string
entity identifier values such
as 1.1.1.1, google.com

Yes

entity_type string

0: “SourceHostName”
1: “SourceAddress”
2: “SourceUserName”
3: “SourceProcessName”
4: “SourceMacAddress”
5: “DestinationHostName”
6: “DestinationAddress”
7: “DestinationUserName”
8: “DestinationProcessName”
9: “DestinationMacAddress”
10: “DestinationURL”
11: “Process”
12: “FileName”
13: “FileHash”
14: “EmailSubject”
15: “ThreatSignature”
16: “USB”
17: “Deployment”
18: “CreditCard”
19: “PhoneNumber”
20: “CVE”
21: “ThreatActor”
22: “ThreatCampaign”
23: “GenericEntity”
24: “ParentProcess”
25: “ParentHash”

Yes

Related Concepts: Case Manipulation*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 192 of 271

26: “ChildProcess”
27: “ChildHash”
28: “SourceDomain”
29: “DestinationDomain”
30: “IPSet”

is_internal boolean True/False True: Internal, False: external Yes

is_suspicous boolean True/False
True: Suspicious, False: Not
suspicious

Yes

is_enriched boolean True/False
True: Enriched, False: Not enriched.
The default value is False.

Yes

is_vulnerable boolean True/False
True: Vulnerable, False: Not
vulnerable. The default value is False

Yes

properties dict
{“Property1”:“PropertyValue”,
“Property2”:“PropertyValue2”}

Yes

case_id string 12345
Unique case identifier. The case_id
value defaults to None.

No

alert_identifier string 123123
Unique alert identifier. The
alert_identifier value defaults to None.

No

environment string Siemplify, Apple
Environment name as defined in
Siemplify system. The environment
value defaults to None

No

Return Type

NoneType

Error

If there is an existing Entity, Siemplify will throw the following error.

500 Server Error: Internal Server Error for url: https://localhost:8443/api/exter
nal/v1/sdk/CreateEntity?format=snake: \"ErrorMessage\":\"Cannot add entity [Ident
ifier:Entities Identifies - Type:siemplify.parameters[] to alert [MONITORED MAILB
OX <FREETRIAL@SIEMPLIFY.CO>_633997CB-D23B-4A2B-92F2-AD1D350284FF] in case [3070
3] because the entity already exists there.\"

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 193 of 271

Example

Sample code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
siemplify.add_entity_to_case(entity_identifier, entity_type, is_internal, is_susp
icous, is_enriched, is_vulnerable, properties, case_id, alert_identifier, environ
ment)

Result Behavior

This function will add a new entity to the case if it is not present in the case.

Result Value

None

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 194 of 271

4.2.3.4. add_alert_entities_to_custom_list

This function gets a category name (From CustomLists in the Siemplify settings) and returns a list of objects
of type CustomList (Refer to the SiemplifyDataModel for more info) for any of the entities in the scope that
were added to the chosen category.
NOTE: The Environment is added implicitly from the alert’s environment!

result = siemplify.add_alert_entities_to_custom_list("WhiteListed HOSTs")

Parameters:

Param Name Param Type Possible Values Comments Mandatory Parameter

category_name string “CustomList” the custom list category Yes

Return Type

List

Example:

Input: Explicitly, category_name. Implicitly, entities via scope.

Let’s assume this is the state of the CustomList table prior to the function call, and let’s assume the scope of
the action has a single entity, “GOOGLE.COM”

Running add_alert_entities_to_custom_list will result in a list of “CustomList” objects and a configuration
change in the settings. Running the following code we get:

Sample Code

from SiemplifyAction import SiemplifyAction

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 195 of 271

siemplify = SiemplifyAction()
result = siemplify.add_alert_entities_to_custom_list("WhiteListed HOSTs")

Result Behavior

Adds the "Whitelisted HOSTs" category.

Result Value

[<SiemplifyDataModel.CustomList object at 0x0000000003476E10>, <SiemplifyDataMode
l.CustomList object at 0x0000000003476B00>]

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 196 of 271

4.2.3.5. add_tag

This function adds a single tag to the current Siemplify case. A tag can then be later used to filter the case
queue, search or dashboard widgets.

add_tag(tag)

Parameters:

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

tag string Any string to be used as a tag
Length should be shorter than
250 characters

Yes

case_id string
Takes by default the ID of the
context case

No

alert_identifier string
Takes by default the ID of the
context alert

No

Return Type

NoneType

Example:

Sample Code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
tag_to_be_added = "MaliciousMail"
siemplify.add_tag(tag=tag_to_be_added)

Result Behavior

"MaliciousMail" tag is added to the current case.

Related Concepts: Case Manipulation*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 197 of 271

Result Value

None

NOTE: It is advised not to create tags that are too specific, as tags are used in the system to help search
and filter cases. So, try to avoid using tags with entity identifiers or any other unique strings.
NOTE 2: Tags created either manually or by an action will not count for playbook trigger “By Tag”. For that,
please refer to the “Case Tag” table in the Siemplify settings.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 198 of 271

4.2.3.6. any_alert_entities_in_custom_list

This function gets a category name (From CustomLists in the Siemplify settings) and returns True (Boolean)
if any of the entities in the scope is in that category (an entity is considered in the category if its identifier is
listed with this category in the Siemplify settings on the CustomLists table).
NOTE: The Environment is added implicitly from the alert’s environment!

result = siemplify.any_entity_in_custom_list("BlackListed IPs")

Parameters:

Param Name Param Type Possible Values Comments Mandatory Parameter

category_name string “BlackListed IPs” the custom list category Yes

Return Type

Boolean

Example:

Input: Explicitly, category_name. Implicitly, entities via scope.

In the example above, if the IP “1.2.3.4” is part of the action’s scope, the following code will return True
(Boolean):

Sample Code 1

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
result = siemplify.any_entity_in_custom_list("BlackListed IPs")

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 199 of 271

Sample Code 2

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
result = siemplify.any_entity_in_custom_list("Executive IPs")

Result Behavior

Sampe Code 1 _result_ is True. However, Sample Code 2 result is False.

Result Value

True/False

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 200 of 271

4.2.3.7. assign_case

This function assigns the current case to the user. This function requires the user to whom case is going to
be assigned.

assign_case(assigned_user)

Parameters

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

user string
Username or role to which case will be assigned.
e.g. Admin/@tier1

Yes

case_id string Case Identifier e.g. 30123 No

alert_identifier
This value is fetched during the run time of the
action.

No

Return Type

NoneType

Example

Sample Code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
assigned_user= "Admin"
siemplify.assign_case(assigned_user)

Result Behavior

The case gets assigned to the Admin user.

Related Concepts: Case Manipulation*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 201 of 271

Result Result

None

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 202 of 271

4.2.3.8. attach_workflow_to_case

This function attaches workflow to case.

attach_workflow_to_case(workflow_name, cyber_case_id, indicator_identifier)

Parameters

Param Name
Param
Type

Possible
Values

Comments
Mandatory
Parameter

workflow_name string
workflow
name

N/A Yes

cyber_case_id string case identifier
If provided, the cyber_case_id is the unique
case identifier

No

indicator_identifier string alert_identifier
If provided, the indicator_identifier is the
unique alert identifier

No

Return Type

NoneType

Example

Sample code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
siemplify.attach_workflow_to_case(workflow_name, cyber_case_id, indicator_identif
ier)

Result Behavior

Attaches the given workflow to the case for the given indicator identifier

Result Value

None

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 203 of 271

4.2.3.9. change_case_priority

This function sets a case’s priority to a specific value. Values for priority are integers and will be described
below.

siemplify.change_case_priority(priority=-1, 40, 80 or 100)

Parameters

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

priority int
One of the following:
-1, 40, 60, 80 or 100

Priority represented by each number respectively
is: Informative, Low, Medium, High and Critical

Yes

case_id string 12345 Unique case identifier. No

alert_identifier string 12345 Unique alert identifier. No

Return Type

NoneType

Example:

Sample Code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
priority_to_change_to = 60
siemplify.change_case_priority(priority=priority_to_change_to)

Result Behavior

The case priority gets changed to "Medium".

Result Value

None

Related Concepts: Case Manipulation*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 204 of 271

NOTE: Case Priority is a case’s property! Be mindful when changing it from a playbook/alert’s perspective.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 205 of 271

4.2.3.10. change_case_stage

This function sets case’s stage to a specific chosen stage. Stage’s name must be one of the values
specified in the Siemplify settings table – case stages.

siemplify.change_case_stage(stage=stage_to_change_to)

Parameters

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

stage string
Any string from the
case stages table

Stage should match exactly the string that is
defined in the case stages table

Yes

case_id string 12345 Unique case identifier. No

alert_identifier string 12345 Unique alert identifier. No

Return Type

NoneType

Example:

Sample Code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
stage_to_change_to = "Investigation"
siemplify.change_case_stage(stage=stage_to_change_to)

Result Behavior

The case state is changed to "investigation".

Result Value

None

Related Concepts: Case Manipulation*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 206 of 271

NOTE: Case Stage is a case’s property! Be mindful when changing it from a playbook/alert’s perspective.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 207 of 271

4.2.3.11. close_case

This function closes the current case. This is the same as manually closing the case. Function requires the
reason for closure, a root cause and a comment.

siemplify.close_case(reason=reason, root_cause=root_cause, comment=comment)

Parameters

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

reason string

One of three predefined
strings available in the
close popup (when done
manually): “NotMalicious”,
“Malicious” and
“Maintenance”

When creating an action, there is a
parameter type named “Case close
reason” that can be used. The user will
have to choose from the three possible
reasons and won’t be able to input their
own strings

Yes

root_cause string
A string taken from the
“Case close root cause”
table in the settings

Similar to the previous parameter, there is
an action parameter type called “Close
case root cause” which forces the user to
choose from values available in the
relevant table

Yes

comment string
Any string could be used
here

Comment should describe the case, but is
not restricted

Yes

case_id string 12345 Unique case identifier. No

alert_identifier string 12345 Unique alert identifier. No

Return Type

NoneType

Example:

Sample Code

from SiemplifyAction import SiemplifyAction

Related Concepts: Case Manipulation*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 208 of 271

siemplify = SiemplifyAction()
reason = "Maintenance"
root_cause = "Employee Error"
comment = "User accidentally activated a correlation before it was ready to be us
ed and triggered this alert"
siemplify.close_case(reason=reason, root_cause=root_cause, comment=comment)

Result Behavior

The case gets closed with the specified reason, root cause and comment.

Result Value

None

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 209 of 271

4.2.3.12. close_alert

This function closes the current alert. This is the same as manually closing the alert from the case overview.
Function requires the reason for closure, a root cause and a comment, just like the close case alert.

Closing an alert in Siemplify does the following:

1. Moves the current alert (the one we close) to a newly created case
2. Closes the new case (with only one alert)

siemplify.close_alert(reason=reason, root_cause=root_cause, comment=comment)

Parameters

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

reason string

One of three predefined
strings available in the
close popup (when done
manually): “NotMalicious”,
“Malicious” and
“Maintenance”

When creating an action, there is a
parameter type named “Case close
reason” that can be used. The user will
have to choose from the three possible
reasons and won’t be able to input his own
strings

Yes

root_cause string
A string taken from the
“Case close root cause”
table in the settings

Similar to the previous parameter, there is
an action parameter type called “Close
case root cause” which forces the user to
choose from values available in the
relevant table

Yes

comment string
Any string could be used
here

Comment should describe the case, but is
not restricted

Yes

case_id string 12345 Unique case identifier. No

alert_identifier string 12345 Unique alert identifier. No

Return Type

NoneType

Related Concepts: Case Manipulation*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 210 of 271

Example:

Sample Code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
reason = "Maintenance"
root_cause = "Employee Error"
comment = "User accidentally activated a correlation before it was ready to be us
ed and triggered this alert"
siemplify.close_alert(reason=reason, root_cause=root_cause, comment=comment)

Result Behavior

the current alert is moved to new case and subsequently closed with the alert.

Result Value

None

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 211 of 271

4.2.3.13. create_case_insight

This function creates a case insight.

create_case_insight(triggered_by, title, content, entity_identifier, severity, in
sight_type, additional_data, additional_data_type, additional_data_title)

Parameters

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

triggered_by string Virustotal, XForce
The triggered by value is the
name of the integration.

Yes

title string insight title Enriched by Virustotal. Yes

content string Insight Message Insight message to display. Yes

entity_identifier string 1.1.1.1, siemplify.co entity identifier. Yes

severity int 0, 1 or 2 0=info, 1 = warning, 2 = error Yes

insight_type int 0 or 1 0 = general, 1 = Entity Yes

additional_data Dictionary
{“checked against”: “VT”,
“malicious”: “No”}

Additional data to be added to
the case insight.

No

additional_data_type string dict
type of the additional_data like
list, dict or string.

No

additional_data_title String VT Check
Suitable title for the
additional_data

No

Return Type

Boolean

Example

Sample Code

from SiemplifyAction import SiemplifyAction

Related Concepts: Insights*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 212 of 271

siemplify = SiemplifyAction()
siemplify.create_case_insight(triggered_by, title, content, entity_identifier, se
verity, insight_type, additional_data, additional_data_type, additional_data_titl
e)

Result Behavior

Creates the insight for case with defined data.
True if case insight is created otherwise False.

Result Value

True/False

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 213 of 271

4.2.3.14. extract_action_param

Get the value of an action parameter. Each action has parameters that are filled when the action is
configured (in playbook or as manual action). This method allows extracting the value of a selected
parameter of the currently running action.

param_value= siemplify.extract_action_param(
param_name,
default_value=None,
input_type=str,
is_mandatory=False,
print_value=False)

Parameters:

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

param_name string

Any of the
parameters
names available
for the action

The name of the parameter to fetch Yes

default_value Any desired value
The default value of the parameter. The given value
will be returned if the parameter was not set (if
is_mandatory is set to False). Defaults to None.

No

input_type
Any valid python
type

The type of the parameter. The returned value will
be cast to the selected input type. Defaults to str.

No

is_mandatory boolean True/False
Whether the parameter is mandatory. If set to True
and the parameter was not filled, an exception will
be raised. Default to False.

No

print_value boolean True/False
Whether to output the fetched value of the
parameter to the logs. Default to False.

No

Return Type

As passed in input_type

Related Concepts: Integration Configuration & Script Parameters*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 214 of 271

Sample Code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
param_value= siemplify.extract_action_param(

"Threshold",
default_value=-1,
input_type=int,
is_mandatory=False,
print_value=False)

Result Behavior

The value of the selected parameter will be returned, casted to selected type.

Result Value

20

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 215 of 271

4.2.3.15. get_alerts_ticket_ids_
from_cases_closed_since_timestamp

This function retrieves alerts from cases that were closed since timestamp.

get_ticket_ids_for_alerts_dismissed_since_timestamp(timestamp_unix_ms, rule_gener
ator)

Parameters

Param Name Param Type Possible Values Comments Mandatory Parameter

logs_collector string “logs collector” N/A Yes

Return Type

None

Example:

Sample Code

from SiemplifyBase import SiemplifyBase
siemplify = SiemplifyBase()
siemplify.set_logs_collector(logs_collector)

Result Behavior

Sets the logs collector for logging.

Result Value

N/A

Related Concepts: Case Manipulation*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 216 of 271

4.2.3.16. get_attachments

This function gets a list of custom list items from category and entities list. This function returns a list of
custom list item objects.

result = siemplify.get_attachments(caseid)

Parameters:

Param Name Param Type Possible Values Comments Mandatory Parameter

case_id string 234 Unique case id No

Return Type

Dict

Example:

Input: Explicitly, case id.

Sample Code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
result = siemplify.get_attachments(case_id="234")

Result Behavior

A list of dictionaries of attachments will be returned for the case id 234.

Result Value

[{u'is_favorite': False, u'description': u'test', u'type': u'.exe', u'id': 4, u'n
ame': u'chrome_proxy'}]

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 217 of 271

4.2.3.17. get_case_comments

This function gets the comments from the provided case.

get_case_comments(case_id)

Parameters

Param Name Param Type Possible Values Comments Mandatory Parameter

case_id string 12314 Unique case id No

Return Type

List

Example

Sample code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
siemplify.get_case_comments(case_id)

Result Behavior

All comments belonging to case will be fetched.

Result Value

[
{

u 'comment': u 'Test',
u 'case_id': 10085,
u 'is_favorite': False,
u 'alert_identifier': None,
u 'creator_user_id': u 'Admin',
u 'type': 5,

Related Concepts: Case Manipulation*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 218 of 271

u 'id': 1,
u 'modification_time_unix_time_in_ms': 1563272078332L

}, {
u 'comment': u 'jhfksdh',
u 'case_id': 10085,
u 'is_favorite': False,
u 'alert_identifier': None,
u 'creator_user_id': u 'Admin',
u 'type': 5,
u 'id': 2,
u 'modification_time_unix_time_in_ms': 1563272079941L

}, {
u 'comment': u 'kjfhsdm',
u 'case_id': 10085,
u 'is_favorite': False,
u 'alert_identifier': None,
u 'creator_user_id': u 'Admin',
u 'type': 5,
u 'id': 3,
u 'modification_time_unix_time_in_ms': 1563272080598L

}
]

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 219 of 271

4.2.3.18. get_configuration

This function retrieves the stored configurations of the integration for the current running action. The only
mandatory parameter is the “Integration Provider”, which is essentially the integration’s name. This identifier
is the same string used in the integration’s definition file. The output of the function is a dictionary with all
the properties found in the store’s database that matches the integration’s provider name. For example, if
you want to write an action for “Active Directory”, you need to use the following code:

conf = siemplify.get_configuration("ActiveDirectory")

Parameters:

Param
Name

Param
Type

Possible
Values

Comments
Mandatory
Parameter

provider string

Any one of
the
integration
names from
the
marketplace

Integration Provider name is case sensitive. An error will be
thrown if the integration is not installed or the string does
not exist

Yes

environment string
Environment
name from
the settings

Optional If provided, the credentials will be taken from the
relevant environment’s configuration. If no environment is
stated, the case’s environment is used by default. If there is
no configuration for that specific environment, the default
configuration will be returned

No

Return Type

Dictionary

Example:

Sample Code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()

conf = siemplify.get_configuration("ActiveDirectory")

Related Concepts: Integration Configuration & Script Parameters*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 220 of 271

username = conf["Username"]

Result Behavior

Fetches relevant active directory configuration and returns it as a dictionary.

Result Value

{"Server": "Server Address", "Username": "Username", "Password": "Password", "Dom
ain": "Domain", "Custom Fields": "Custom Fields", "Use SSL": "true"}

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 221 of 271

4.2.3.19. get_similar_cases

This function returns a dictionary of similar cases based on entities, ports, rule generators and category
outcome in the provided time frame.

result = siemplify.get_similar_cases(consider_ports,
consider_category_outcome,
consider_rule_generator,
consider_entity_identifiers,
days_to_look_back, case_id=None, end_time_unix_ms=None)

Parameters:

Param Name
Param
Type

Possible
Values

Comments
Mandatory
Parameter

case_id string 234 Unique case id Yes

consider_ports boolean True/False
This will configure whether to use
port filter or not.

Yes

consider_category_outcome boolean True/False
This will configure whether to
consider category outcome of the
events.

Yes

consider_rule_generator boolean True/False
This will configure whether to
consider rule generator for the alerts.

Yes

consider_entity_identifiers boolean True/False
This will configure whether to
consider entity identifiers for the
alerts.

Yes

days_to_look_back integer 365
This will configure number of days
backwards to look for similar cases.

Yes

end_time_unix_ms string 1564214708469
The provided unix time is in
milliseconds.

No

Return Type

List

Related Concepts: Case Manipulation*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 222 of 271

Example:

Input: Everything needs to be explicitly provided except case_id and end_time_unix_ms as they can be
implicitly extracted from the current case.

Sample Code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
result = siemplify.get_similar_cases(consider_ports=True,

consider_category_outcome=False,
consider_rule_generator=False,
consider_entity_identifiers=False,
days_to_look_back=30, case_id="234", end_time_unix_ms=N

one)

Result Behavior

A list of case id similar to the case 234 will be returned.

Result Value

[4, 231]

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 223 of 271

4.2.3.20. load_case_data

This function loads the case data.

result = siemplify.load_case_data()

Parameters:

No parameters are required.

Return Type

NoneType

Example:

Input: Implicitly, case via current case.

Sample Code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
result = siemplify.load_case_data()

Result Behavior

The case data gets loaded.

Result Value

None

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 224 of 271

4.2.3.21. mark_case_as_important

This function marks a case as important. The importance mark can be either filtered in the search window or
in the case queue. In addition, it is visible in the case queue without clicking on the case itself.

siemplify.mark_case_as_important()

Parameters

Param Name Param Type Possible Values Comments Mandatory Parameter

case_id string 12345 Unique case identifier. No

alert_identifier string 12345 Unique alert identifier. No

Return Type

NoneType

Example:

Sample Code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
siemplify.mark_case_as_important()

Result Behavior

The current case is marked as important.

Result Value

None

Related Concepts: Case Manipulation*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 225 of 271

4.2.3.22. raise_incident

This function raises the current alert as incident.

raise_incident(case_id, alert_identifier)

Parameters:

Param Name Param Type Possible Values Comments Mandatory Parameter

case_id string 12345 Unique case identifier No

alert_identifier string 123123 Unique alert identifier No

Return Type

NoneType

Example:

Sample Code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
siemplify.raise_incident(case_id, alert_identifier)

Result Behavior

The case raised to Incident status.

Result Value

None

Related Concepts: Case Manipulation*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 226 of 271

4.2.3.23. remove_alert_entities_from_custom_list

This function gets a category name (From CustomLists in the Siemplify settings) and returns a list of objects
of type CustomList for any of the entities in the scope that were removed from the chosen category. (Refer
to the SiemplifyDataModel for more info)
NOTE: The Environment is added implicitly from the alert’s environment!

result = siemplify.remove_alert_entities_from_custom_list("WhiteListed HOSTs")

Parameters:

Param Name Param Type Possible Values Comments Mandatory Parameter

category_name string “WhiteListed HOSTs” the custom list category Yes

Return Type

List

Example:

Input: Explicitly, category_name. Implicitly, entities via scope.

Let’s assume this is the state of the CustomList table prior to the function call, and let’s assume the scope of
the action has a single entity, “GOOGLE.COM”

Running remove_alert_entities_from_custom_list will result in a list of “CustomList” objects and a
configuration change in the settings. Running the following code we get:

Sample Code

from SiemplifyAction import SiemplifyAction

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 227 of 271

siemplify = SiemplifyAction()
result = siemplify.remove_alert_entities_from_custom_list("WhiteListed HOSTs")

Result Behavior

The "WhiteListed HOSTS" is removed.

Result Value

[<SiemplifyDataModel.CustomList object at 0x0000000003476E10>, <SiemplifyDataMode
l.CustomList object at 0x0000000003476B00>]

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 228 of 271

4.2.3.24. set_logs_collector

This function retrieves alerts from cases that were closed since timestamp.

set_logs_collector(logs_collector)

Parameters

Param Name Param Type Possible Values Comments Mandatory Parameter

timestamp_unix_ms long 1550409785000L N/A Yes

rule_generator string Phishing email detector N/A Yes

Return Type

List

Example:

Sample Code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
siemplify.get_alerts_ticket_ids_from_cases_closed_since_timestamp(timestamp_uni
x_ms=1550409785000L, rule_generator="Phishing email detector")

Result Behavior

The list of alerts from the cases that were closed since the timestamp are return
ed .

Result Value

[u'5792a6d6-0abd-40bc-a00a-2bffd7e4f122']

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 229 of 271

4.2.3.25. update_alerts_additional_data

This function updates the alerts with additional data from a playbook.

update_alerts_additional_data(alerts_additional_data, case_id)

Parameters

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

alerts_additional_data dict {“additionalData”:“Value”} Yes

case_id string 12314
Unique case id. (Case Id is read
dynamically while running the
action)

No

Return Type

NoneType

Example

Sample code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
additional_data = {"testKey":"testValue"}
siemplify.update_alerts_additional_data(alerts_additional_data=additional_data, c
ase_id=caseid)

Result Behavior

updates the alert with additional data i.e. testKey:testValue.

Result Value

None

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 230 of 271

4.2.3.26. _get_case

This function returns the case object in dictionary format.

result = siemplify._get_case()

Parameters:

No parameters are required.

Return Type

Dict

Example:

Sample Code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
result = siemplify._get_case()

Result Behavior

Case data in the dictionary format is returned.

Result Value

{u'creation_time': 1564202116444L, u'alert_count': 1, u'assigned_user': u'@Tier
1', u'has_suspicious_entity': False, u'environment': u'', u'high_risk_products':
None, u'has_workflow': False, u'title': u'IPS_Product', u'is_touched': False, u'i
s_merged': False, u'priority': -1, u'additional_properties': {}, u'sla_expiratio
n_unix_time': None, u'status': 1, u'description': None, u'modification_time': 156
4202116948L, u'is_incident': False, u'cyber_alerts': [...], u'is_important': Fals
e, u'stage': u'Triage', u'is_locked': False, u'identifier': u'234'}

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 231 of 271

4.2.3.27. _load_current_alert

This function loads the alerts from the case.

result = siemplify._load_current_alert()

Parameters:

No parameters are required.

Return Type

List

Example:

Input: Implicitly, alerts via scope.

Sample Code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
result = siemplify._load_current_alert()

Result Behavior

An alert will be returned if it is present in the case.

Result Value

A list of alerts that are present in the current case.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 232 of 271

4.2.3.28. _load_target_entities

This function adds the entity from alerts to the target entities list.

result = siemplify._load_target_entities()

Parameters:

No parameters are required.

Return Type

None

Example:

Input: Implicitly, entities via scope.

Sample Code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
result = siemplify._load_target_entities()

Result Behavior

Entities that are on target_entities will be added to the list.

Result Value

target_entities list will be updated with new entity.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 233 of 271

4.2.3.29. _get_custom_list_items

This function gets a list of custom list items from category and entities list. This function returns a list of
custom list item objects.

result = siemplify._get_custom_list_items(category_name, entities)

Parameters:

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

category_name string “BlackListed IPs”
the custom list
category

Yes

entities list
[“GOOGLE.COM” ,
“8.8.8.8”]

a list of entities Yes

Return Type

List

Example:

Input: Explicitly, category_name. Implicitly, entities via scope.

Sample Code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
result = siemplify._get_custom_list_items("Blacklisted IP", entities)

Result Behavior

A list of entities in the blacklisted IP category will be returned.

Result Value

List of entities in blacklisted IP category.

Related Concepts: Custom Lists*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 234 of 271

4.2.4. SiemplifyConnectorExecution
(SiemplifyConnectors.py)

The SiemplifyConnectorExecution object inherits its properties from the Siemplify object, which inherits its
properties from the SiemplifyBase object.
SiemplyBase = Grandfather
Siemplify = Father
SiemplifyConnectorExecution = Child

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 235 of 271

4.2.4.1. is_overflowed_alert

This function checks whether a given alert will be overflowed during the case ingestion in Siemplify system.
Siemplify has a builtin overflow prevention mechanism, based on multiple parameters, i.e: alert identifier,
ingestion time, alert name and etc. An overflowed alert will not be ingested to the Siemplify system, but
marked as an overflow alert. This function allows to determine whether a given alert with certain parameters
will be marked as an overflow during ingestion process or not.

is_overflowed_alert(environment, alert_identifier, ingestion_time=SiemplifyUtil
s.unix_now(), original_file_path=None, original_file_content=None, alert_name=Non
e, product=None, source_ip=None, source_host=None, destination_ip=None, destinati
on_host=None)

Parameters

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

environment string Siemplify, Apple
The environment of the alert.
Environment can be created in the
Siemplify settings

Yes

alert_identifier string 123123 Unique alert identifier Yes

ingestion_time long Current Unix Time
If not provided, defaults to current
time (UNIX time format).

Yes

original_file_path string
Path to the file containing
the alert’s original raw
data

No

original_file_content string
Content of the file
containing the alert’s
original raw data

No

alert_name string The name of the alert No

product string McAfee ESM, QRadar
The product name for the device that
generated the alert

No

source_ip string 10.0.0.13, 192.168.0.13
Source IP address associated with
the alert

No

source_host string
source@company.local,
source.company.local

The source host address associated
with the alert

No

destination_ip string 10.0.0.31, 192.168.0.31
Destination IP address associated
with the alert

No

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 236 of 271

destination_host string remote.company.local
Destination host address associated
with the alert

No

Return Type

Boolean

Example

Sample code

from SiemplifyConnectors import SiemplifyConnectorExecution
siemplify = SiemplifyConnectorExecution()
siemplify.is_overflowed_alert(environment, alert_identifier, ingestion_time=Siemp
lifyUtils.unix_now(), original_file_path, original_file_content, alert_name, prod
uct, source_ip, source_host, destination_ip, destination_host)

Result Behavior

True if the alert will be overflowed during ingestion process, otherwise False.

Result Value

True/False

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 237 of 271

4.2.4.2. return_package

This function allows to inject CaseInfo objects to Siemplify as cases. The function converts the CaseInfo
objects to matching Siemplify case files, who are being transferred to the Siemplify Data Processing Pipline
Engine. The given CaseInfo objects will be converted to matching Siemplify case files and will be processed
and injected to the Siemplify system.

return_package(cases, output_variables, log_items)

Parameters

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

cases cases
list of cases [
CaseInfo]

Cases ready to be ingested to
siemplify system.

Yes

output_variables dict Deprecated No

log_items list Deprecated No

Return Value

None

Example

Sample code

from SiemplifyConnectors import SiemplifyConnectorExecution
siemplify = SiemplifyConnectorExecution()
siemplify.return_package(cases, output_variables, log_items)

Result Value

None

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 238 of 271

4.2.4.3. return_test_result

Deprecated.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 239 of 271

4.2.4.4. extract_connector_param

Get the value of a connector parameter. Each connector has parameters that are filled when the it’s
configured. This method allows to extract the value of a selected parameter of the currently running
connector.

param_value= siemplify.extract_connector_param(
param_name,
default_value=None,
input_type=str,
is_mandatory=False,
print_value=False)

Parameters:

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

param_name string some_param_value The name of the parameter to fetch Yes

default_value
The default value of the parameter. The given
value will be returned if the parameter was not set
(if is_mandatory is set to False). Defaults to None.

No

input_type
The type of the parameter. The returned value will
be cast to the selected input type. Defaults to str.

No

is_mandatory boolean True/False
Whether the parameter is mandatory. If set to
True and the parameter was not filled, an
exception will be raised. Default to False.

No

print_value boolean True/False
Whether to output the fetched value of the
parameter to the logs. Default to False.

No

Return Type

As passed in input_type

Sample Code

from SiemplifyConnectors import SiemplifyConnectorExecution

Related Concepts: Integration Configuration & Script Parameters*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 240 of 271

siemplify = SiemplifyConnectorExecution()
param_value= siemplify.extract_connectors_param(

"Logs Folder",
default_value="C:\\Siemplify_Server\\Scrip

ting\\JobLogs",
input_type=str,
is_mandatory=False,
print_value=False)

Result Behavior

The value of the selected parameter will be returned, casted to selected type.

Result Value

C:\Siemplify_Server\Scripting\SampleJob\Logs

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 241 of 271

4.2.5. SiemplifyJob (SiemplifyJob.py)

The SiemplifyJob object inherits its properties from the Siemplify object, which inherits its properties from
the SiemplifyBase object.
SiemplyBase = Grandfather
Siemplify = Father
SiemplifyJob = Child

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 242 of 271

4.2.5.1. get_configuration

This function retrieves the stored credentials for the current running integration to be used in the Job. The
provider parameter is mandatory and is case sensitive.

get_configuration(provider, environment)

Parameters

Param
Name

Param
Type

Possible
Values

Comments
Mandatory
Parameter

provider string

Any one of
the
integration
names from
the
marketplace

Integration Provider name is case sensitive. An error will be
thrown if the integration is not installed or the string does
not exist

Yes

environment string
Environment
name from
the settings

Optional If provided, the credentials will be taken from the
relevant environment’s configuration. If no environment is
stated, the case’s environment is used by default. If there is
no configuration for that specific environment, the default
configuration will be returned

No

Return Type

Dictionary

Example

Sample Code

from SiemplifyJob import SiemplifyJob
siemplify = SiemplifyJob()
siemplify.get_configuration(provider="VirusTotal", environment="")

Result Behavior

Dictionary with saved credentials for the integration from the marketplace will b
e returned.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 243 of 271

Result Value

{
u'AgentIdentifier': None,
u'Api Key': u'c0c412#########################4f85b22e707',
u'Verify SSL': u'True',
u'RunRemotely': u'False'
}

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 244 of 271

4.2.5.2. extract_job_param

Get the value of an job parameter. Each job has parameters that are filled when the job is configured. This
method allows to extract the value of a selected parameter of the currently running job.

param_value= siemplify.extract_job_param(
param_name,
default_value=None,
input_type=str,
is_mandatory=False,
print_value=False)

Parameters:

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

param_name string some_param_value The name of the parameter to fetch Yes

default_value
The default value of the parameter. The given
value will be returned if the parameter was not set
(if is_mandatory is set to False). Defaults to None.

No

input_type
The type of the parameter. The returned value will
be cast to the selected input type. Defaults to str.

No

is_mandatory boolean True/False
Whether the parameter is mandatory. If set to
True and the parameter was not filled, an
exception will be raised. Default to False.

No

print_value boolean True/False
Whether to output the fetched value of the
parameter to the logs. Default to False.

No

Return Type

As passed in input_type

Sample Code

from SiemplifyJob import SiemplifyJob
siemplify = SiemplifyJob()

Related Concepts: Integration Configuration & Script Parameters*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 245 of 271

param_value= siemplify.extract_job_param(
"Logs Folder",
default_value="C:\\Siemplify_Server\\Scrip

ting\\JobLogs",
input_type=str,
is_mandatory=False,
print_value=False)

Result Behavior

The value of the selected parameter will be returned, casted to selected type.

Result Value

C:\Siemplify_Server\Scripting\SampleJob\Logs

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 246 of 271

4.2.5.3. get_system_info

This function retrieves the system information such as case information, user information and so on. See the
Result Value section for all information returned by the function.

get_system_info(start_time_unixtime_ms)

Parameters

Param Name
Param
Type

Possible
Values

Comments
Mandatory
Parameter

start_time_unixtime_ms string 1564532753123
The Unix timestamp in
milliseconds.

Yes

Return Type

Dictionary

Example

Sample Code

from SiemplifyJob import SiemplifyJob
import json
siemplify = SiemplifyJob()
siemplify.script_name = "Retrieve System Information"
systemInfo = siemplify.get_system_info(start_time_unixtime_ms="1564532753123")
print json.dumps(systemInfo)

Result Behavior

Json with system information will be printed to standard output from the provide
d timestamp.

Result Value

{
"sla_count": 0,
"unique_users_last_month": 1,
"manual_actions_used": 0,
"reports_generated": 0,

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 247 of 271

"new_integrations": [],
"new_connectors": [],
"escalations_to_tier2_count": 0,
"workbooks_with_close_action": 0,
"last_upgrade_date": "2019-06-20T16:01:49",
"action_playbook_appearances": [],
"marketplace_version": "12.14",
"average_opened_cases_per_user": 0.0,
"important_cases_count": 0,
"playbooks_executed": 0,
"top_user_screen_resolutions": ["1920x1080"],
"playbooks_edited": 0,
"average_alerts_per_day": 0.0,
"average_closed_cases_per_day": 0.0,
"widgets_created": 0,
"visualization_accessed": 0,
"searches_executed": 0,
"incidents_invoked_count": 0,
"average_tasks_per_case": 0.0,
"environments_count": 2,
"custom_actions_created": 0,
"average_insights_per_case": 0.0,
"case_comments_added": 0,
"version_number": "5.2.22.0",
"dashboard_shows": 0,
"theme_usages": [],
"users_created": 0,
"top_user_browsers": ["Mozilla/5.0,(X11; Linux x86_64),AppleWebKit/537.3

6,(KHTML, like Gecko),Ubuntu,Chromium/75.0.3770.90,Chrome/75.0.3770.90,Safari/53
7.36"],

"report_templates_edited": 0,
"case_reports_generated": 0,
"unique_users_last_day": 1,
"average_users_per_day": 1.7894736842105263,
"widgets_edited": 0,
"average_cases_per_day": 0.0,
"custom_actions_edited": 0,
"playbooks_created": 0

}

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 248 of 271

4.2.6. ScriptResult (ScriptResult.py)

This class represents the return object an action passes back to Siemplify. The returned object consists of:
JSON, links, tables and more.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 249 of 271

4.2.6.1. add_entity_json

This function adds json result with entity identifier as title.

siemplify.result.add_entity_json(entity_identifier, json_data)

Parameters

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

entity_identifier string
entity identifier values such as 1.1.1.1,
google.com

N/A Yes

json_data dict JSON formatted data Yes

Return Type

NoneType

Example

Sample code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
entity_identifier = "10.0.0.1"
json_data = {"title":"10.0.0.1", "Message":"This is the default gateway"}
siemplify.result.add_entity_json(entity_identifier, json_data)

Result Behavior

The provided Json data will be added to entity 10.0.0.1.

Result Value

None

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 250 of 271

4.2.6.2. add_result_json

This function adds json result to the case.

siemplify.result.add_result_json(json_data)

Parameters

Param Name Param Type Possible Values Comments Mandatory Parameter

json_data dict JSON formatted data Yes

Return Type

NoneType

Example

Sample code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
json_data = {"title":"10.0.0.1", "Message":"This is the default gateway"}
siemplify.result.add_result_json(json_data)

Result Behavior

The provided Json data will be added to current case.

Result Value

None

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 251 of 271

4.2.6.3. add_entity_content

This function adds json result with entity identifier as title.

siemplify.result.add_entity_content(entity_identifier, content)

Parameters

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

entity_identifier string
entity identifier values such as 1.1.1.1,
google.com

N/A Yes

content string Data related to the entity to add Yes

Return Type

NoneType

Example

Sample code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
entity_identifier = "10.0.0.1"
content = {"title":"10.0.0.1", "Message":"This is the default gateway"}
siemplify.result.add_entity_content(entity_identifier, json_data)

Result Behavior

The provided content data will be added to entity 10.0.0.1.

Result Value

None

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 252 of 271

4.2.6.4. add_entity_table

This function adds data table with entity identifier as table title.

siemplify.result.add_entity_table(entity_identifier, data_table)

Parameters

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

entity_identifier string
entity identifier values such as 1.1.1.1,
google.com

N/A Yes

data_table list CSV formatted list Yes

Return Type

NoneType

Example

Sample code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
entity_identifier = "10.0.0.1"
data_table = ["h1", "h2", "h3", "Entity Type", "Enrichment", "Original Identifie
r"]
siemplify.result.add_entity_table(entity_identifier, data_table)

Result Behavior

The provided csv data will be added to entity 10.0.0.1 with entity identifier as
title.

Result Value

None

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 253 of 271

4.2.6.5. add_entity_attachment

This function adds json result with entity identifier as title.

siemplify.result.add_entity_attachment(entity_identifier, filename, file_content
s, additional_data=None)

Parameters

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

entity_identifier string
entity identifier values such as 1.1.1.1,
google.com

N/A Yes

filename string File name of the attachment Yes

file_contents base64 File contents in the base 64 format Yes

additional data string Any relevant attachment data No

Return Type

NoneType

Example

Sample code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
entity_identifier = "10.0.0.1"
file_contents = <base64 value>
filename = "Image.png"
siemplify.result.add_entity_attachment(entity_identifier, filename, file_content
s, additional_data=None)

Result Behavior

The provided file will be added as attachment to entity 10.0.0.1.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 254 of 271

Result Value

None

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 255 of 271

4.2.6.6. add_entity_html_report

This function adds html data with entity identifier as title.

siemplify.result.add_entity_html_report(entity_identifier, report_name, report_co
ntents)

Parameters

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

entity_identifier string
entity identifier values such as 1.1.1.1,
google.com

N/A Yes

report_name string HTML report name Yes

report_contents HTML HTML contents of the report Yes

Return Type

NoneType

Example

Sample code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
entity_identifier = "10.0.0.1"
report_name = "HTML Report"
report_contents = "<html><body><title>html content</title></body></html>"
siemplify.result.add_entity_html_report(entity_identifier, report_name, report_co
ntents)

Result Behavior

The provided html contents will be added to entity 10.0.0.1.

Result Value

None

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 256 of 271

4.2.6.7. add_entity_link

This function adds json result with entity identifier as title.

siemplify.result.add_entity_link(entity_identifier, link)

Parameters

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

entity_identifier string
entity identifier values such as 1.1.1.1,
google.com

N/A Yes

link string
Link to the websites such as
https://siemplify.co

Yes

Return Type

NoneType

Example

Sample code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
entity_identifier = "10.0.0.1"
link = "https://siemplify.co/entity/10.0.0.1"
siemplify.result.add_entity_link(entity_identifier, link)

Result Behavior

The provided link will be added to entity 10.0.0.1.

Result Value

None

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 257 of 271

4.2.6.8. add_link

This function adds a web link to the selected entity.

siemplify.add_link(title, link)

Parameters

Param Name Param Type Possible Values Comments Mandatory Parameter

title string Siemplify Homepage Title for the link Yes

link string https://siemplify.co Website Link. Yes

Return Type

NoneType

Example:

Sample Code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
siemplify.result.add_link("Siemplify", "https://siemplify.co")

Result Behavior

The provided website link gets added as result.

Result Value

None

Related Concepts: Action Results*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 258 of 271

4.2.6.9. add_attachment

This function adds a web link to the selected entity.

siemplify.result.add_attachment(title, filename, file_contents, additional_data)

Parameters

Param Name
Param
Type

Possible Values Comments
Mandatory
Parameter

title string
Potentially Malicious
File

Suitable Title for the attachment Yes

filename string chrome_proxy.exe
Suitable filename for the attached
file.

Yes

file_contents base64 Base64 formatted file content. No

Return Type

NoneType

Example:

Sample Code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
siemplify.result.add_attachment(title="Malicious File", filename="virus.ini", fil
e_contents="Base64 content of virus.ini", additional_data=None)

Result Behavior

The attachment gets added as result.

Result Value

None

Related Concepts: Action Results*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 259 of 271

4.2.6.10. add_content

This function adds a web link to the selected entity.

siemplify.result.add_content(entity_identifier, content)

Parameters

Param Name
Param
Type

Possible
Values

Comments
Mandatory
Parameter

entity_identifier string “1.2.3.4” Unique entity identifier Yes

content dict
content=“some
content”

Content is added as the key-value pair to the output
of *_get_entity_data(entity_identifier) function.

No

Return Type

NoneType

Example:

Sample Code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
siemplify.add_content(entity_identifier="1.2.3.4", content="New content")

Result Behavior

The content gets added as result for the selected entity. Entity can be implicitl
y selected from the scope.

Result Value

None

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 260 of 271

4.2.6.11. add_html

This function adds a web link to the selected entity.

siemplify.result.add_html(title, report_name, report_contents)

Parameters

Param Name Param Type Possible Values Comments Mandatory Parameter

title string HTML File Suitable Title for the HTML file Yes

report_name string report.html HTML file report. Yes

report_contents string HTML HTML content of the file as string. Yes

Return Type

NoneType

Example:

Sample Code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
siemplify.result.add_html(title="New evidence", report_name="evidence.html", repo
rt_content="<html><body><title>Evidence</title><p>This is html report</p></bod
y></html>")

Result Behavior

The html report gets added as result for the selected entity. Entity can be impl
icitly selected from the scope

Result Value

None

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 261 of 271

4.2.6.12. add_json

This function adds json result with entity identifier as title.

siemplify.result.add_json(entity_identifier, json_data)

Parameters

Param Name
Param
Type

Possible Values Comments
Is
Mandatory

entity_identifier string
Any string to be used as title
(Does not have to be an entity
identifier!)

Using the same title for more than
one object will bundle the objects
together in the action result view

Yes

json_data
string
OR
dict

This parameter can be either a
string representing a JSON
(json.dumps() can help
achieve it, see example above)
or a ‘python’ dictionary

Sending the dictionary or dumping it
into a string has the same effect. It is
recommended to always dump the
dictionary into a string. A list can only
be sent as a string.

Yes

Return Type

NoneType

Example

Sample code

siemplify = SiemplifyAction()
import json
data = {

"title": "Product",
"type": "object",
"required": ["id", "name", "price"],
"properties": {

"id": {
"type": "number",
"description": "Product identifier"

},

Related Concepts: Action Results*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 262 of 271

"stock": {
"type": "object",
"properties": {

"warehouse": {
"type": "number"

},
"retail": {

"type": "number"
}

}
}

}
}

siemplify.result.add_json('Title goes here', json.dumps(data))

Result Behavior

The provided json data gets added as result for the selected entity. Entity can b
e implicitly selected from the scope

Result Value

None

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 263 of 271

4.2.6.13. add_data_table

This function adds json result with entity identifier as title.

siemplify.result.add_data_table(title, data_table)

Parameters

Param
Name

Param
Type

Possible Values Comments
Mandatory
Parameter

title string Open Ports for this entity Suitable title for the table Yes

data_table list
csv_data = [“entity,open ports”,
“1.2.3.4,80”]

CSV formatted list of
information

Yes

Return Type

NoneType

Example

Sample code

from SiemplifyAction import SiemplifyAction
siemplify = SiemplifyAction()
title = "open ports per entity"
csv_data = ["entity,open ports", "1.2.3.4,80"]
siemplify.result.add_data_table(title=title, data_table=csv_data)

Result Behavior

The provided table is added as result.

Result Value

None

Related Concepts: Action Results*

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 264 of 271

4.2.7. SiemplifyLogger (SiemplifyLogger.py)

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 265 of 271

4.2.7.1. loadConfigFromFile

This function loads logger config file.

loadConfigFromFile(run_folder=run_folder, log_location=log_location)

Parameters:

Param Name Param Type Possible Values Comments Mandatory Parameter

run_folder string “./VirusTotal” The running folder path. Yes

log_location string elastic search log location Yes

Return Type

Dictionary

Example:

Sample Code

from SiemplifyLogger import SiemplifyLogger
sb = SiemplifyLogger()
run_folder = "D:\Siemplify\ElasticSearch"
log_location = "D:\Siemplify\ElasticSearch\elastic.log"
sb.loadConfigFromFile(run_folder=run_folder, log_location=log_location)

Result Behavior

Configuration is loaded from the provided run folder and log location.

Result Value

{}

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 266 of 271

4.2.7.2. exception

This function logs a message with ERROR level in the Siemplify logs (both in log files and in Elasticsearch).
In addition the traceback of the last exception will be written to the logs as well.

exception(message)

Parameters:

Param
Name

Param Type
Possible
Values

Comments
Mandatory
Parameter

message
string (python 3.7) /
unicode (python 2.7)

The message to log. If an exception is caught, the
exception object itself can be passed as well.

Yes

In addition to the message param, additional custom parameters can be passed. The added parameters
will be displayed in the matching Elasticsearch document, under the args key and can be used to log
additional information regarding the log entry, i.e: the line number, the alert id, etc.

Return Type

NoneType

Example:

Sample Code

from SiemplifyLogger import SiemplifyLogger
sb = SiemplifyLogger()
try:

result = 1/0
except Exception as e:

sb.error("Division by Zero", alert_id=123)

Result Behavior

"Division by Zero" will be logged with level ERROR in the log file along with th
e exception traceback and a matching document will be created in Elasticsearch wi
th args.alert_id field with value of 123.

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 267 of 271

Result Value

None

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 268 of 271

4.2.7.3. error

This function logs a message with ERROR level in the Siemplify logs (both in log files and in Elasticsearch).

error(message)

Parameters:

Param
Name

Param Type
Possible
Values

Comments
Mandatory
Parameter

message
string (python 3.7) / unicode (python
2.7)

The message to
log

Yes

In addition to the message param, additional custom parameters can be passed. The added parameters
will be displayed in the matching Elasticsearch document, under the args key and can be used to log
additional information regarding the log entry, i.e: the line number, the alert id, etc.

Return Type

NoneType

Example:

Sample Code

from SiemplifyLogger import SiemplifyLogger
sb = SiemplifyLogger()
message = "Error Message"
sb.error(message, alert_id=123)

Result Behavior

"Error Message" will be logged with level ERROR in the log file and a matching do
cument will be created in Elasticsearch with args.alert_id field with value of 12
3.

Result Value

None

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 269 of 271

4.2.7.4. warn

This function logs a message with WARN level in the Siemplify logs (both in log files and in Elasticsearch).

warn(message)

Parameters:

Param
Name

Param Type
Possible
Values

Comments
Mandatory
Parameter

message
string (python 3.7) / unicode (python
2.7)

The message to
log

Yes

In addition to the message param, additional custom parameters can be passed. The added parameters
will be displayed in the matching Elasticsearch document, under the args key and can be used to log
additional information regarding the log entry, i.e: the line number, the alert id, etc.

Return Type

NoneType

Example:

Sample Code

from SiemplifyLogger import SiemplifyLogger
sb = SiemplifyLogger()
message = "Warning Message"
sb.warn(message, alert_id=123)

Result Behavior

"Warning Message" will be logged with level WARN in the log file and a matching d
ocument will be created in Elasticsearch with args.alert_id field with value of 1
23.

Result Value

None

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 270 of 271

4.2.7.5. info

This function logs a message with INFO level in the Siemplify logs (both in log files and in Elasticsearch).

info(message)

Parameters:

Param
Name

Param Type
Possible
Values

Comments
Mandatory
Parameter

message
string (python 3.7) / unicode (python
2.7)

The message to
log

Yes

In addition to the message param, additional custom parameters can be passed. The added parameters
will be displayed in the matching Elasticsearch document, under the args key and can be used to log
additional information regarding the log entry, i.e: the line number, the alert id, etc.

Return Type

NoneType

Example:

Sample Code

from SiemplifyLogger import SiemplifyLogger
sb = SiemplifyLogger()
message = "Informational Message"
sb.info(message, alert_id=123)

Result Behavior

"Informational Message" will logged with level INFO in the log file and a matchin
g document will be created in Elasticsearch with args.alert_id field with value o
f 123.

Result Value

None

Siemplify Developers Hub - Version 1_en

Siemplify Private and Confidential Page 271 of 271

	Table of Contents
	1. Start Developing in Siemplify
	1.1. Siemplify Integration Marketplace
	Integrations
	Integrations Explore
	Integrations Configure

	1.2. Getting Started with Siemplify
	Connectors
	Cases, Alerts and Events
	Entities
	How to create Entities in Siemplify
	Playbooks

	1.3. My First Integration
	Overview
	Choose the product you would like to integrate with
	Creating your first custom integration in the IDE

	1.4. My First Action
	Overview
	Creating a Custom Action
	Action Parameters
	Edit the Get Domain Details Action
	Adding a JSON Result to the Action

	Testing the Action
	Creating an Enrichment action

	1.5. My First Connector
	What are Connectors?
	Overview
	Prerequisite steps
	1.5.1. Developing the Connector
	Edit the Email Connector
	The relevant imports
	Main function
	Getting the unread email message
	Creating the event
	Creating the alert info and initializing the alert info characteristics fields
	Finding the URL in the email body

	1.5.2. Configuring the Connector
	Overview
	Connector Configuration
	1.5.3. Testing the Connector
	1.5.4. Mapping & Modeling
	1.6. My First Automation
	Overview
	Create your first Playbook
	1.7. Publish Your First Integration
	Overview
	1.8. Requirements for Publishing Integration
	Integration Requirements:
	Action Requirements

	1.9. My First Use Case
	Overview
	What is a Use Case?

	1.9.1. Creating a Use Case
	Step by Step Guide
	1. Define the Use Case
	2. Prepare Use Case Alerts
	Simulation Alert Fields:

	3. Extract Entities (Map & Model the data)
	4. Build a Playbook
	Configuring Conditions in the Playbook
	To Test The Connector:

	5. Write a guide
	6. Publish Use Case

	1.9.2. Requirements for Publishing Use Case
	2. Playbook Lifecycle Management
	2.1. Prerequisites
	2.2. Basic Playbook Design
	Preparation

	2.2.1. Know your Alerts
	2.2.2. Analyze existing manual flow
	2.2.3. Begin Playbook Design
	Frame required steps

	2.2.4. Playbook Blocks – Identify Repeatable Logical Flows
	2.2.5. Playbook Block Design
	2.2.6. Design Tips
	2.2.7. Summary of Implementation
	2.3. Build the Playbook Block
	2.3.1. Determine Playbook block output
	2.4. Build Playbook
	2.5. Individual Features
	2.5.1. Placeholders and the Expression Builder
	2.5.2. Entities
	2.5.3. Conditions
	2.5.4. Error Handling
	2.5.5. Environments
	2.5.6. Insights
	2.5.7. Simulate Alerts
	2.5.8. How Playbooks work behind the scenes
	3. Siemplify API
	4. SDK References
	4.1. Concepts & Tutorials
	4.1.1. Actions
	4.1.1.1. Action Results
	URL Links
	Data Tables
	Json Results
	Attachments

	4.1.2. Integration Configuration & Script Parameters
	Integration Configuration
	Script Parameters

	4.1.2.1. External Configuration Providers
	4.1.3. Custom Lists
	Custom List item structure: This object is defined in the SiemplifyDataModel.py

	4.1.4. Case Manipulation
	Case Metadata
	Methods:

	Data Retrieval
	4.1.4.1. Insights (General/Entity)
	General Insight
	Entity Insight

	4.2. API
	4.2.1. SiemplifyBase (SiemplifyBase.py)
	4.2.1.1. fetch_timestamp
	Parameters:
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.1.2. save_timestamp
	Parameters:
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.1.3. fetch_and_save_timestamp
	Parameters:
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.1.4. run_folder
	Parameters:
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.2. Siemplify (Siemplify.py)
	4.2.2.1. add_Attachment
	4.2.2.2. add_comment
	Parameters
	Return Type
	Example
	Sample code
	Result Behavior
	Result Value

	4.2.2.3. add_entity_insight
	Parameters
	Return Type
	Example
	Sample code
	Result Behavior
	Result Value

	4.2.2.4. add_entity_to_case
	Parameters
	Return Type
	Example
	Sample code
	Result Behavior
	Result Value

	4.2.2.5. add_entities_to_custom_list
	Parameters
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.2.5.1. extract_configuration_param
	Parameters:
	Return Type
	Sample Code
	Result Behavior
	Result Value

	4.2.2.6. any_entity_in_custom_list
	Parameters:
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.2.7. assign_case
	Parameters
	Return Type
	Example
	Sample code
	Result Behavior
	Result Value

	4.2.2.8. attach_workflow_to_case
	Parameters
	Return Type
	Example
	Sample code
	Result Behavior
	Result Value

	4.2.2.9. change_case_priority
	Parameters
	Return Type
	Example
	Sample code
	Result Behavior
	Result Value

	4.2.2.10. create_case
	Parameters
	Return Type
	Example
	Sample code
	Result Behavior
	Result Value

	4.2.2.11. end
	Parameters
	Return Value
	Errors
	Example
	Sample code
	Result

	4.2.2.12. end_script
	4.2.2.13. get_case_comments
	Parameters
	Return Type
	Example
	Sample code
	Result Behavior
	Result Value

	4.2.2.14. get_existing_custom_list_categories
	Parameters
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.2.15. is_existing_category
	Parameters
	Return Type
	Example:
	Sample Code 1
	Sample Code 2
	Result Behavior
	Result Value

	4.2.2.16. mark_case_as_important
	Parameters
	Return Type
	Example
	Sample code
	Result Behavior
	Result Value

	4.2.2.17. raise_incident
	Parameters
	Return Type
	Example
	Sample code
	Result Behavior
	Result Value

	4.2.2.18. remove_entities_from_custom_list
	Parameters
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.2.19. update_entities
	Parameters
	Return Type
	Example
	Sample code
	Result Behavior
	Result Value

	4.2.3. SiemplifyAction (SiemplifyAction.py)
	4.2.3.1. add_attachment
	Parameters:
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.3.2. add_comment
	Parameters
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.3.3. add_entity_to_case
	Parameters
	Return Type
	Error
	Example
	Sample code
	Result Behavior
	Result Value

	4.2.3.4. add_alert_entities_to_custom_list
	Parameters:
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.3.5. add_tag
	Parameters:
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.3.6. any_alert_entities_in_custom_list
	Parameters:
	Return Type
	Example:
	Sample Code 1
	Sample Code 2
	Result Behavior
	Result Value

	4.2.3.7. assign_case
	Parameters
	Return Type
	Example
	Sample Code
	Result Behavior
	Result Result

	4.2.3.8. attach_workflow_to_case
	Parameters
	Return Type
	Example
	Sample code
	Result Behavior
	Result Value

	4.2.3.9. change_case_priority
	Parameters
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.3.10. change_case_stage
	Parameters
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.3.11. close_case
	Parameters
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.3.12. close_alert
	Parameters
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.3.13. create_case_insight
	Parameters
	Return Type
	Example
	Sample Code
	Result Behavior
	Result Value

	4.2.3.14. extract_action_param
	Parameters:
	Return Type
	Sample Code
	Result Behavior
	Result Value

	4.2.3.15. get_alerts_ticket_ids_ from_cases_closed_since_timestamp
	Parameters
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.3.16. get_attachments
	Parameters:
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.3.17. get_case_comments
	Parameters
	Return Type
	Example
	Sample code
	Result Behavior
	Result Value

	4.2.3.18. get_configuration
	Parameters:
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.3.19. get_similar_cases
	Parameters:
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.3.20. load_case_data
	Parameters:
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.3.21. mark_case_as_important
	Parameters
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.3.22. raise_incident
	Parameters:
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.3.23. remove_alert_entities_from_custom_list
	Parameters:
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.3.24. set_logs_collector
	Parameters
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.3.25. update_alerts_additional_data
	Parameters
	Return Type
	Example
	Sample code
	Result Behavior
	Result Value

	4.2.3.26. _get_case
	Parameters:
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.3.27. _load_current_alert
	Parameters:
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.3.28. _load_target_entities
	Parameters:
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.3.29. _get_custom_list_items
	Parameters:
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.4. SiemplifyConnectorExecution (SiemplifyConnectors.py)
	4.2.4.1. is_overflowed_alert
	Parameters
	Return Type
	Example
	Sample code
	Result Behavior
	Result Value

	4.2.4.2. return_package
	Parameters
	Return Value
	Example
	Sample code
	Result Value

	4.2.4.3. return_test_result
	4.2.4.4. extract_connector_param
	Parameters:
	Return Type
	Sample Code
	Result Behavior
	Result Value

	4.2.5. SiemplifyJob (SiemplifyJob.py)
	4.2.5.1. get_configuration
	Parameters
	Return Type
	Example
	Sample Code
	Result Behavior
	Result Value

	4.2.5.2. extract_job_param
	Parameters:
	Return Type
	Sample Code
	Result Behavior
	Result Value

	4.2.5.3. get_system_info
	Parameters
	Return Type
	Example
	Sample Code
	Result Behavior
	Result Value

	4.2.6. ScriptResult (ScriptResult.py)
	4.2.6.1. add_entity_json
	Parameters
	Return Type
	Example
	Sample code
	Result Behavior
	Result Value

	4.2.6.2. add_result_json
	Parameters
	Return Type
	Example
	Sample code
	Result Behavior
	Result Value

	4.2.6.3. add_entity_content
	Parameters
	Return Type
	Example
	Sample code
	Result Behavior
	Result Value

	4.2.6.4. add_entity_table
	Parameters
	Return Type
	Example
	Sample code
	Result Behavior
	Result Value

	4.2.6.5. add_entity_attachment
	Parameters
	Return Type
	Example
	Sample code
	Result Behavior
	Result Value

	4.2.6.6. add_entity_html_report
	Parameters
	Return Type
	Example
	Sample code
	Result Behavior
	Result Value

	4.2.6.7. add_entity_link
	Parameters
	Return Type
	Example
	Sample code
	Result Behavior
	Result Value

	4.2.6.8. add_link
	Parameters
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.6.9. add_attachment
	Parameters
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.6.10. add_content
	Parameters
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.6.11. add_html
	Parameters
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.6.12. add_json
	Parameters
	Return Type
	Example
	Sample code
	Result Behavior
	Result Value

	4.2.6.13. add_data_table
	Parameters
	Return Type
	Example
	Sample code
	Result Behavior
	Result Value

	4.2.7. SiemplifyLogger (SiemplifyLogger.py)
	4.2.7.1. loadConfigFromFile
	Parameters:
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.7.2. exception
	Parameters:
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.7.3. error
	Parameters:
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.7.4. warn
	Parameters:
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

	4.2.7.5. info
	Parameters:
	Return Type
	Example:
	Sample Code
	Result Behavior
	Result Value

