NVMesh CSI Driver
Guide

1.2.1 — Last update: 10 April 2022

Table of Contents

1. Copyright and Trademark Information ... e e 1
2 e (Y - Ve - PSP 2
B TR 3 T [T o o 3
T (T T T 1= 4
4.1, QUICK SEArt GUIAES ...ttt et e et e et e et eeeaan s 5

e I 1 1] 7= | < 0o T o e 11 Y 6

4.1.2. Create PVC and POD ... e 8

4.2. Installation & ConfiguUIration e e e e 10
LG T U o110 1= = | PP SPPPTPPIN 12

S U == Vo | 13
4.4.1. Creating a PersistentVolumeClaim e 14

4.4.2. Multiple NVMesh Clusters & TOPOIOGYuuiiiuniiiiiee et e e eees 16

4.4.3. Important Notes and KNOWN [SSUEScouuiiniiiii e 22

s ey = o Yo = SN 23
4.4.4.1. StatiC ProviSiONINgu.. i at e e e e aees 24

] (o] =T 1= O = 1 T PPN 27

4.4.4.3. BlOCK VOIUME ... ittt ettt e e e 30

4.4.4.4 File SYStEM VOIUME ..cuuiiiii et e e e e e e e e e e et e e e e e e eeees 31
4.4.4.5.UsiNg @ CUSTOM VPG ... e et e e 33

4.4.4.6. Read ONlY VOIUME ... coui i et e e e e e e e e e e e e e eeas 34

LI Lo o W] 4 =T 48 =Y (= =Y o o =S 38

LT A=Y (=3 o Y 1 - 39

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

1. Copyright and Trademark Information

© 2015-2022 Excelero, Inc. All rights reserved. Specifications are subject to change without notice.
Excelero, the Excelero logo, Remote-Direct-Drive-Access (RDDA) and MeshProtect are trademarks
Excelero, Inc. in the United States and/or other countries. NVMesh® is a registered trademark of Excelero,
Inc. in the United States.

All other brands or products are trademarks or registered trademarks of their respective holders and should
be treated as such.

© 2021 Excelero, Inc., All Rights Reserved Page 1 of 39

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

2. Preface

Excelero™ creates innovative, high performance storage solutions that accelerate business applications
and deliver outstanding return on investment with the lowest cost of ownership. The NVMesh® software
defined block storage product offers the performance of local server flash with the convenience, efficiency
and redundancy of an all-flash-array. For details, go to: www.excelero.com.

This document describes the NVMesh CSI Driver for integration with Container Orchestration System (CO)
e.g. Kubernetes. For more information on NVMesh refer to NVMesh User Guide.

AUDIENCE

The primary audience for this document is intended to be storage and/or application administration
personnel responsible for installing and deploying the Excelero NVMesh product in a Container
Orchestration environment.

NON-DISCLOSURE REQUIREMENTS

© Copyright 2015-2022 Excelero, Inc. All rights reserved. This document contains the confidential and
proprietary information of Excelero, Inc. Do not reproduce or distribute without the prior written consent of
Excelero.

FEEDBACK

We continually try to improve the quality and usefulness of Excelero documentation. If you have any
corrections, feedback, or requests for additional documentation, send an e-mail message to
support@excelero.com

INFORMATION ABOUT THIS DOCUMENT

All information about this document including typographical conventions, references, and a glossary of
terms can be found in the Document Reference Section.

© 2021 Excelero, Inc., All Rights Reserved Page 2 of 39

http://www.excelero.com/
https://www.excelero.com/nvmesh-user-guide/
mailto:support@excelero.com

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

3. Introduction

NVMesh CSI Driver is a Container Storage Interface (CSI) driver that allows Container Orchestration
systems (COs) to use the NVMesh storage backend.
The driver allows COs to allocate, manipulate and remove NVMesh Persistent Volumes using the COs

interface.

This document describes the Installation, Configuration and Usage of the NVMesh CSI Driver in all
supported COs.

© 2021 Excelero, Inc., All Rights Reserved Page 3 of 39

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

4. Kubernetes

NVMesh CSI driver is compatible with any Container Orchestration (CO) system that support the CSI spec.
It may also be compatible with other provisioning systems that support CSI such as Openshift.

This section covers the usage with Kubernetes

© 2021 Excelero, Inc., All Rights Reserved Page 4 of 39

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

4.1. Quick Start Guides

This section includes guides that will help you get your NVMesh CSI Driver installed configured and tested
quickly.

© 2021 Excelero, Inc., All Rights Reserved Page 5 of 39

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

4.1.1. Install & Configure

Deploy the NVMesh CSI Driver

To deploy the driver in Kuberentes simply run the following command from a node with kubectl in your
cluster.

Using helm

Download the helm chart using:
wget https://github.com/Excelero/nvmesh-csi-driver/releases/download/v1.2.1/hel

m-chart.nvmesh-csi-driver-1.2.1.tgz

Install and set the nvmesh-management server and protocol:

kubectl create namespace nvmesh-csi
helm install nvmesh-csi-driver --namespace nvmesh-csi-driver ./helm-chart.nvmesh-
csi-driver-1.2.1.tgz —--set config.servers=<your.mgmt.server>:4000 --set config.pr

otocol=https

Using kubectl (without helm)

kubectl create namespace nvmesh-csi

for kubernetes version < 1.22

kubectl apply -f https://raw.githubusercontent.com/Excelero/nvmesh-csi-driver/v
1.2.1/deploy/kubernetes/deployment.yaml

for kubernetes version >= 1.22

kubectl apply -f https://raw.githubusercontent.com/Excelero/nvmesh-csi-driver/v
1.2.1/deploy/kubernetes/deployment-k8s-1.22.yaml

Configure

* If you used helm to install the driver and you set the flags for config.servers and confi
g.protocol during installation you can skip this step.

To let the CSI Driver know where your nvmesh-management server is, run the following on your master
node and follow the instructions:
bash <(curl -s https://raw.githubusercontent.com/Excelero/nvmesh-csi-driver/v

1.2.1/deploy/kubernetes/scripts/set mgmt address.sh)

© 2021 Excelero, Inc., All Rights Reserved Page 6 of 39

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

This will update the nvmesh-csi-config ConfigMap and restart the nvmesh-csi-controller POD.

You are all set!

Next Quick Guide — Create Volume and POD

© 2021 Excelero, Inc., All Rights Reserved Page 7 of 39

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

4.1.2. Create PVC and POD

This quick start guide walks you through creating a BlockVolume using the NVMesh CSI Driver and using
this volume from a POD.

Prerequisite

Before you continue, please make sure you have already Installed and Configured your NVMesh CSI Driver
on your cluster.

Create a PVC

Create a volume using the following PVC yamil:

apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: block-pvc
spec:
accessModes:

- ReadWriteMany
volumeMode: Block
resources:

requests:

storage: 5Gi

storageClassName: nvmesh-concatenated

Run the following command and check the output to make sure your volume was created successfully:

Skubectl get pvc

NAMESPACE NAME STATUS VOLUME CAPAC
ITY ACCESS MODES STORAGECLASS AGE

default block-pvc Bound pvc-2ec86£dd-£656-4810-9a03-54£fcd668a705 5G

i RWX nvmesh-concatenated 2s

Go to your NVMesh-Managment GUI. You should be able to see that a new volume was created.

Create a POD

Create a POD using the following PVC yaml:

apiVersion: vl

© 2021 Excelero, Inc., All Rights Reserved Page 8 of 39

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

kind: Pod

metadata:
name: block-volume-consumer-pod
labels:

app: block-volume-consumer-test

spec:
containers:
- name: block-volume-consumer
image: excelero/qguide block volume consumer
args: ["/dev/my block dev"]
volumeDevices:
- name: block-volume
devicePath: /dev/my block dev
volumes:

- name: block-volume
persistentVolumeClaim:

claimName: block-pvc

Run the following command. Check the output to make sure your pod was created successfully:

S kubectl get pod block-volume-consumer-pod
NAME READY STATUS RESTARTS AGE

block-volume-consumer-pod 1/1 Running 0 20s

Check the logs:

$ kubectl logs block-volume-consumer-pod
Writing to file /dev/my_block dev

Read 15 bytes: "Excelero NVMesh"

- Sleeping

- Sleeping

The following indicates that the Container in the pod had successfully written and read from the block device
/dev/my block dev

For more examples, go to Usage Examples.

© 2021 Excelero, Inc., All Rights Reserved Page 9 of 39

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

4.2. Installation & Configuration

Installation

Using helm

Download the helm chart:
wget https://github.com/Excelero/nvmesh-csi-driver/releases/download/v1.2.1/hel

m-chart.nvmesh-csi-driver-1.2.1.tgz

Install and set the nvmesh-management server and protocol:

kubectl create namespace nvmesh-csi
helm install nvmesh-csi-driver --namespace nvmesh-csi-driver ./helm-chart.nvmesh-
csi-driver-1.2.1.tgz --set config.servers=<your.mgmt.server>:4000 --set config.pr

otocol=https

Using kubectl (without helm)

kubectl create namespace nvmesh-csi

for kubernetes version < 1.22

kubectl apply -f https://raw.githubusercontent.com/Excelero/nvmesh-csi-driver/v
1.2.1/deploy/kubernetes/deployment.yaml

for kubernetes version >= 1.22

kubectl apply -f https://raw.githubusercontent.com/Excelero/nvmesh-csi-driver/v
1.2.1/deploy/kubernetes/deployment-k8s-1.22.yaml

Configuration

» If you are using the Kubernetes Dashboard, make sure the selected namespace is "nvmesh-csi’ in the
side menu.

Edit Management Server Address

Using the Kubernetes dashboard, go to Config Maps > nvmesh-config.
OR from the terminal run: kubectl edit configmap -n nvmesh-csi nvmesh-csi-config

Edit management.servers to your MANAGEMENT SERVERS configuration: management.servers: serv
er-1.domain.com.
For multiple management servers: management.servers: server-1.domain.com, server—-2.domai

n.com, server-2.domain.com.

© 2021 Excelero, Inc., All Rights Reserved Page 10 of 39

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

If you deployed NVMesh Management in a Container using Excelero/nvmesh-mgmt-docker, then use:

management.servers: "nvmesh-management-svc.nvmesh.svc.cluster.local:4000"

management.protocol: "http"

Edit Management Server Username and Password

* This step is required only if the default username/password of the management server was
changed.

Using the Kubernetes dashboard, go to Secrets > nvmesh-credentials.
OR from the terminal run: kubectl edit secret -n nvmesh-csi nvmesh-credentials

Edit username and password to your management server credentials configuration.
p(banner tip). Secrets in Kubernetes must be in base64 format

For example, use:

echo -n 'admin@excelero.com' | base64
and
echo -n 'admin' | base6c4

to get the username and password in base64.

For more info visit: Kubernetes Docs — Convert your secret data to a base-64 representation.

© 2021 Excelero, Inc., All Rights Reserved Page 11 of 39

https://github.com/Excelero/nvmesh-mgmt-docker
https://kubernetes.io/docs/tasks/inject-data-application/distribute-credentials-secure/#convert-your-secret-data-to-a-base-64-representation

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

4.3. Uninstall

If you installed using helm, then use:

helm uninstall nvmesh-csi-driver

Otherwise, uninstall the nvmesh-csi-driver from Kubernetes using the following command:

wget -0 - https://raw.githubusercontent.com/Excelero/nvmesh-csi-driver/master/de

ploy/kubernetes/scripts/remove deployment.sh | bash

This will remove all NVMesh CSI Driver Kubernetes objects and remove nvmesh-csi nhamespace.
The ConfigMap will still be available under nvmesh-csi-saved namespace.

© 2021 Excelero, Inc., All Rights Reserved Page 12 of 39

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

4.4. Usage

This topic describes how to use the NVMesh CSI Driver in Kubernetes.

e Creating a PersistentVolumeClaim

+ StorageClass
« |mportant Notes and Known Issues

 Examples

© 2021 Excelero, Inc., All Rights Reserved Page 13 of 39

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

441. Creating a PersistentVolumeClaim

In Kubernetes, a PersistentVolumeClaim (PVC) is a request for storage by a user.

Let’s look at an example of a PVC yaml, and then describe the fields relevant for NVMesh and their options.
For more information on PersistentVolumeClaims, see K8s Docs — PersistentVolumesClaims.

apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: block-pvc
spec:
accessModes:

- ReadWriteMany
volumeMode: Block
resources:

requests:

storage: 10Gi

storageClassName: nvmesh-concatenated

Access Modes (accessModes)

The Kubernetes accessMode defines a per Node semantics of how the user wants to access the volume.
The following values are accepted:

* ReadWriteOnce — the volume can be mounted as read-write by a single node.
* ReadOnlyMany — the volume can be mounted read-only by many nodes.
* ReadWriteMany — the volume can be mounted as read-write by many nodes.

Volume Mode (volumeMode)

The volumeMode field controls which type of volume will be created. accepted values are:

* Block — Will create a raw block NVMesh volume.

* FileSystem — Will create a block NVMesh volume and upon first attach the volume will be formatted
into a FileSystem according to the FileSystem defined in the StorageClass. See Important Nodes and
Known Issues for more info on FileSystem volumes limitations.

For more information on volumeMode please refer to K8s Docs — PersistentVolumesClaims

Request Storage (resources.requests.storage)
This enables entering the amount of Storage to be provisioned for the requested volume.

© 2021 Excelero, Inc., All Rights Reserved Page 14 of 39

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#volume-mode

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

A value of 100G1i will create a 100GiB Volume in NVMesh.

Storage Class Name (storageClassName)

This is the name of the StorageClass object in Kubernetes.

It will tell Kubernetes that NVMesh is the storage backend as well as declare the volume type and its
parameters.

After installing the nvmesh-csi-driver, default StorageClass objects for each of the default NVMesh Volume
Provisioning Groups (VPGs) will be created.

Following is the list of default StorageClass names and their corresponding VPG in NVMesh:

StorageClass name NVMesh VPG
nvmesh-concatenated DEFAULT_CONCATENATED_VPG
nvmesh-raid0 DEFAULT_RAID_0_VPG
nvmesh-raidl DEFAULT_RAID_1_VPG
nvmesh-raidl0 DEFAULT_RAID_10_VPG

nvmesh-ec-dual-target-redundancy DEFAULT_EC _DUAL_TARGET_REDUNDANCY_VPG

nvmesh-ec-single-target-redundancy DEFAULT _EC SINGLE TARGET_REDUNDANCY_VPG

See more about StorageClasses here.

© 2021 Excelero, Inc., All Rights Reserved Page 15 of 39

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

4.4.2. Multiple NVMesh Clusters & Topology

Introduction

The NVMesh CSI Driver Topology feature allows a single CSI driver to manage multiple clusters of NVMesh
within a single Kubernetes environment.

The driver topology feature ensures that each pod using a NVMesh-based PVC will only be scheduled on
nodes where the volume is accessible from the NVMesh client.

When the topology feature is configured, each NVMesh cluster will be represented as an NVMesh CSI zone.
The driver automatically adds a label on each node in the format nvmesh-csi.excelero.com/zone=<zo
ne name> to have Kubernetes associate each node with a cluster or zone.

The configuration of zones is configured by the administrator in the nvmesh-csi-driver-config
ConfigMap. The driver will discover all nodes for z given zone by querying the NVMesh management
servers configured for that zone and will save this topology in a new ConfigMap named nvmesh-csi-topo
logy, This ConfigMap should not be modified by the user. When a volume is created, the driver will add no
deAffinity tothe PersistentVolume with the zone label to let the Kubernetes scheduler know that all
future pods using this PVC should be scheduled only on nodes in the same zone as the NVMesh cluster
where the volume was provisioned.

Configuration

To inform the CSI driver of the available zones add the topology field to the nvmesh-csi-driver-conf
ig ConfigMap.
Following is an example with a list of all available options.

kind: ConfigMap
apiVersion: vl
metadata:
name: nvmesh-csi-driver-config
data:
management.protocol: https
management.servers: 10.0.1.117:4000
attachIOEnabledTimeout: "30"
topology: |-
{
"zones": {
"zone A": {
"management": {

"servers": "workerl.domain.com:4000"

© 2021 Excelero, Inc., All Rights Reserved Page 16 of 39

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

}y
"zone B": {
"management": {

"servers": "workerd.domain.com:4000"

The topology field is a JSON with a single zones key, which contains the configuration for each zone.
Each key in the zones object is a name of a zone and the value provides the zone configuration
parameters.

For each zone configuration, the following fields are available:

Field Description

management Configuration for the management server in this specific zone

managemen A comma-separated list of management servers addresses in the format address:port, for
t.servers instance management-1:4000, management-2:4000
managemen i " ” « "
The management server protocol, i.e. “http” or “https
t.protocol
managemen . . . “ . »
. The management user to login with, for instance “admin@excelero.com
.user
managemen

The management password, for instance “admin”
t.password

Creating Volumes and Pods

Create a PVC and a Pod

Create a StorageClass with volumeBindingMode: WaitForFirstConsumer.

kind: StorageClass
apiVersion: storage.k8s.io/vl
metadata:

name: nvmesh-with-topology
provisioner: nvmesh-csi.excelero.com
allowVolumeExpansion: true

volumeBindingMode: WaitForFirstConsumer

© 2021 Excelero, Inc., All Rights Reserved Page 17 of 39

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

parameters:

vpg: DEFAULT CONCATENATED VPG

Create a PVC using this StorageClass

apiVersion: vl
kind: PersistentVolumeClaim
metadata:

name: topology-volume0
spec:

accessModes:

- ReadWriteOnce
volumeMode: Filesystem
resources:

requests:

storage: 1Gi

storageClassName: nvmesh-wait-for-consumer

Create a Pod that uses the PVC

apiVersion: vl
kind: Pod
metadata:
name: topology-pod0
spec:
serviceAccountName: topology-aware
containers:
- name: nginx
image: gcr.io/google containers/nginx-slim:0.8
ports:
- containerPort: 80
name: web
volumeMounts:
- name: Www
mountPath: /usr/share/nginx/html
volumes:
- name: www
persistentVolumeClaim:

claimName: topology-volumeO(

© 2021 Excelero, Inc., All Rights Reserved Page 18 of 39

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

Assign the PVC / Pod to a zone using a StorageClass with the topology field

To create volumes on a specific NVMesh cluster, create a StorageClass with the allowedTopologies
field.

When a PVC is created from a StorageClass with this field, the CSI driver will create the volume on the
desired zone.

Multiple allowedTopologies

If multiple zones are allowed, as in the example below, the CSI driver will randomly pick one of the zones
and create the volume on that zone.

The PersistentVolume will then be accessible only on the selected zone and every pod with the same
PVC will only be scheduled to that selected zone.

Different PVCs created from the same storageClass may be in different zones.

kind: StorageClass
apiVersion: storage.k8s.io/vl
metadata:
name: nvmesh-with-topology
provisioner: nvmesh-csi.excelero.com
allowVolumeExpansion: true
volumeBindingMode: WaitForFirstConsumer
parameters:
vpg: DEFAULT CONCATENATED VPG
allowedTopologies:
- matchlLabelExpressions:
- key: nvmesh-csi.excelero.com/zone
values:
- zone A

- zone B

Assign a PVC or Pod to a zone using the Pod’s nodeAffinity

It is possible to set the nodeAffinity directly on the pod. The PVC and the pod will then be created in the
desired zone. In this case, the PVC should use a StorageClass with volumeBindingMode: WaitForFir

stConsumer.

apiVersion: vl
kind: Pod
metadata:
name: topology-pod0
spec:

serviceAccountName: topology-aware

© 2021 Excelero, Inc., All Rights Reserved Page 19 of 39

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

spec:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: nvmesh-csi.excelero.com/zone
operator: In
values:
- zone A
- zone B
containers:
- name: nginx
image: gcr.io/google containers/nginx-slim:0.8
ports:
- containerPort: 80
name: web
volumeMounts:
- name: Www
mountPath: /usr/share/nginx/html
volumes:
- name: wWww
persistentVolumeClaim:

claimName: topology-volume(

For a more complex example with StatefulSet, Multiple Zone and antiAffinity on zones, see Topology-Aware

Volume Provisioning in Kubernetes

PVC with volumeBindingMode: Immediate

When a PVC with volumeBindingMode: Immediate is created, the NVMesh CSI Driver will randomly

pick a zone and provision the volume on that zone.
All subsequent pods using this PVC will be scheduled to this zone.

* volumeBindingMode: WaitForFirstConsumer should be preferred as this will allow
the Kubernetes scheduler to schedule the pod to the most fitting node taking into account
the load on nodes and their capabilities, such as network, CPU, memory etc. The PVC will
then be provisioned on the zone where the first pod was scheduled.

References

For additional details on VolumeBindingMode, see k8s Documentation — VolumeBindingMode

© 2021 Excelero, Inc., All Rights Reserved Page 20 of 39

https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/
https://kubernetes.io/docs/concepts/storage/storage-classes/#volume-binding-mode

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

For additional details on AllowedTopologies, see k8s Documentation — AllowedTopologies

© 2021 Excelero, Inc., All Rights Reserved Page 21 of 39

https://kubernetes.io/docs/concepts/storage/storage-classes/#allowed-topologies

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

4.4.3. Important Notes and Known Issues

AccessMode

The Kubernetes AccessMode field in a PVC can receive the following values:
(reference K8s Docs — Volume AccessMode)

* ReadWriteOnce — the volume can be mounted as read-write by a single node
* ReadOnlyMany — the volume can be mounted read-only by many nodes
* ReadWriteMany — the volume can be mounted as read-write by many nodes

* Kubernetes AccessModes as defined today, only describe node attach (not pod mount)
semantics. For example when using AccessMode: ReadWriteOnce The NVMesh CSI
Driver will allow the attach to happen only on one node BUT does not guarantee that 2
pods running on the same node will not access the volume at the same time.

FileSystem Volumes

When creating a FileSystem Volume the CSI Driver currently supports only non-shared File Systems (ext4
and xfs)

This means that the user should make sure that no more than one POD is writing to the Volume at the same
time, and multiple readers might not have the most updated data.

About using the PVC AccessMode field please see below.

To deploy any other file system, please create a BlockVolume and deploy the file system after the volume
was created.

! When FileSystem Volume is used Make sure you have configured the consuming PODS
to have only one writer at a time. having multiple writers might cause the attach process to
hang making the volume unusable.

© 2021 Excelero, Inc., All Rights Reserved Page 22 of 39

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

4.4.4. Examples

This section covers examples of creating Kubernetes objects that use NVMesh Storage backend.

« Block Volume
» File System Volume
» Using Custom VPG

© 2021 Excelero, Inc., All Rights Reserved Page 23 of 39

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

4.4.4.1. Static Provisioning

For Static Provisioning, we have an existing NVMesh volume that was created outside the CSI scope and
want to consume it in Kubernetes.

By default, when creating a PVC from an NVMesh StorageClass, the CSI Driver will create a new NVMesh
Volume and a new PersistentVolume in Kubernetes will be created to describe the new volume. This is
called Dynamic Provisioning.

However, If you have an existing NVMesh Volume, possibly already populated with data, to consume it in
Kubernetes, you will need to use Static Provisioning.

Following is an example of Static Provisioning:

» This example is also available in the github repo under docs/examples/static-provisioning.yaml.

Create NVMesh Volume

Create a volume in the NVMesh Management software with the following attributes:

+ Name: vol-1
+ Capacity: 5Gi
* Raid Type: RAID10 (you could use the DEFAULT_RAID_10_VPG)

Create a PersistentVolume in Kubernetes

Create a PersistentVolume in Kubernetes to represent the volume already defined in the NVMesh:

apiVersion: vl
kind: PersistentVolume
metadata:
name: name-in-k8s
spec:
accessModes:
- ReadWriteMany
- ReadWriteOnce
- ReadOnlyMany
persistentVolumeReclaimPolicy: Retain
capacity:
storage: 5Gi
volumeMode: Block
storageClassName: nvmesh-raidlO
csi:

driver: nvmesh-csi.excelero.com

© 2021 Excelero, Inc., All Rights Reserved Page 24 of 39

https://github.com/Excelero/nvmesh-csi-driver/blob/master/docs/examples/static-provisioning.yaml

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

volumeHandle: vol-1

Relevant fields info:

metadata.name is the name that this PV will have in Kubernetes.

spec.csi.driver must be setto nvmesh-csi.excelero.com.

spec.csi.volumeHandle is the name of the volume in NVMesh.

persistentVolumeReclaimPolicy, by setting this field to Retain we let Kubernetes know this
PersistentVolume should not be deleted when the bounded PVC is deleted.

accessModes, note that in this example we allowed all Access Modes, but you can choose any sub-set of
these 3 options.

Create a PersistentVolumeClaim

Create a PVC that will be bound to the PV just created.

apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: pvc-1
spec:
accessModes:

- ReadWriteOnce
volumeMode: Block
resources:

requests:

storage: 5Gi

storageClassName: nvmesh-raidlO

Create a Pod that uses the Volume

Run a pod that will mount this volume and use it:

* This pod specifically does nothing with the volume, but you could get a shell to the running container
and explore or run IO on the volume.
* The volume is available inside the pod under /vol.

apiVersion: vl

© 2021 Excelero, Inc., All Rights Reserved Page 25 of 39

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

kind: Pod
metadata:
name: pod-1
spec:
containers:
- name: c-1
image: alpine
command: ["/bin/sh", "-c", "echo hello ; while true ; do wait 1; done"]
volumeDevices:
- name: vol
devicePath: /vol
restartPolicy: Never
volumes:
- name: vol
persistentVolumeClaim:

claimName: pvc-1

© 2021 Excelero, Inc., All Rights Reserved Page 26 of 39

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

4.44.2. Storage Class

In Kubernetes, a StorageClass provides a way for administrators to describe the “classes” of storage they

offer.
For NVMesh, different StorageClasses could describe different type of volumes that will be created by the
NVMesh backend. (e.g different RAID Levels).

Let’s look at an example of a StorageClass yaml and then describe the fields relevant to NVMesh and their
options.
For more information on StorageClass, see K8s Docs — StorageClass.

kind: StorageClass
apiVersion: storage.k8s.io/vl
metadata:

name: nvmesh-raidlO
provisioner: nvmesh-csi.excelero.com
allowVolumeExpansion: true
volumeBindingMode: Immediate
mountOptions:

- debug
parameters:

vpg: DEFAULT RAID 10 VPG

Provisioner

The provisioner field determines which storage backend driver / plugin will be used for provisioning the

volume.
To create an NVMesh volume, this field must be set to: nvmesh-csi.excelero.com

Allow Volume Expansion (allowVolumeExpansion)

The field allowVolumeExpansion controls whether the volume should be expandable or not.
For more info, see K8s Docs — Allow Volume Expansion.

Volume Binding Mode (volumeBindingMode)

The volumeBindingMode field controls volume provisioning timing. The following values are accepted:

+ Immediate: This is the default if omitted. If this value is set, dynamic provisioning occurs once the

PersistentVolumeClaim is created.
* WaitForFirstConsumer: If this value is set, volume provisioning will be delayed until a Pod using

the PersistentVolumeClaim is created.

© 2021 Excelero, Inc., All Rights Reserved Page 27 of 39

https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/#allow-volume-expansion

Excelero, Ltd.

NVMesh CSI Driver Guide - 1.2.1_en

For more info on volumeBindingMode, see K8s Docs — VolumeBindingMode

Mount Options (mountOptions)

The mountOptions field enables setting the options passed to the mount command (mount -o <option

s>) and a special key allows to set the mount permissions.

To set the mount permissions, for example to 777, use:

mountOptions:

- nvmesh:permissions=777

* Mount options are not validated on either the class or PV. If a mount option is invalid, the

PV mount fails.

Parameters

The parameters field is a structure used to define NVMesh specific parameters. The following parameters

are accepted:

field name type

fsType choice
Deprecated ext3,ext4,xfs

csi.storag

e.k8s.i0/f

choice

ext3,ext4,xfs
stype

mkfsOption string,

s optional
string,

vpg .
optional

, string,

raidLevel .
optional

diskClasse)
list, optional

S

serverClas .
list, optional

ses

description

Deprecated, see csi.storage.k8s.1i0/fstype below

When a PVC has volumeMode: FileSystem, the £sType field will determine
which FileSystem type will be deployed on the volume. Accepted values are: ext
3, ext4, xfs

Flags and extended options to pass to mkfs command when creating a
Filesystem. For available options, see the documentation of mkfs.ext4 or mkf
s.xfse.g:mkfsOption: -b 4096

The name of the NVMesh Volume Provisioning Group (VPG) as defined in the
NVMesh Management.

The volume type, allowed values are: concatenated, raid0O, raidl, raidl0
and ec.

Limit volume allocation to specific diskClasses, defaults to None.

Limit volume allocation to specific serverClasses, defaults to None.

© 2021 Excelero, Inc., All Rights Reserved Page 28 of 39

https://kubernetes.io/docs/concepts/storage/storage-classes/#volume-binding-mode

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

limitByDis
. list, optional Limit volume allocation to specific disks, defaults to None.
S
limitByNod . L . o
list, optional Limit volume allocation to specific nodes, defaults to None.
es

If raidLevel is defined, the following parameters are accepted according to the selected raidLevel:

» If raidLevel is raid0 or raid10
° stripeSize (integer, optional) — number in blocks of 4k, i.e. stripeSize:32 = 128k, optional,
defaults to 32.
° stripeWidth (integer, optional) — number of disks to use, defaults to 2.

» If raidLevel is ec
o dataBlocks (integer, optional) — number of disks to use, defaults to 8.
° parityBlocks (integer, optional) — number of disks to use, defaults to 2.
o protectionLevel (string, optional) — protection level to use, allowed values are Full Separ

ation, Minimal Separation, Ignore Separation defaultsto Full Separation.

* All integer values must be wrapped with quotes for Kubernetes to accept the yaml. i.e st
ripeWidth: "2".

* For more info on the specific fields, their purpose and allowed value range, see the
NVMeshSDK Documentation. To open NVMeshSDK documentation, go to your NVMesh
Management Server and on the top right corner click Docs > SDK.

© 2021 Excelero, Inc., All Rights Reserved Page 29 of 39

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

4.4.4.3. Block Volume

Create a Raw Block Volume (Kubernetes 1.14 or higher)

o¥s See section Important Notes and Known Issues.

apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: block-pvc
spec:
accessModes:

- ReadWriteMany
volumeMode: Block
volumeBindingMode: Immediate
resources:

requests:

storage: 3Gi

storageClassName: nvmesh-concatenated

© 2021 Excelero, Inc., All Rights Reserved Page 30 of 39

Excelero, Ltd.

4.4.44. File System Volume

NVMesh CSI Driver Guide - 1.2.1_en

The driver deployment creates storage-classes that correspond to each of the NVMesh default VPGs.

The following storage classes will appear under namespace “nvmesh-csi”:

* nvmesh-concatenated
* nvmesh-raid0

* nvmesh-raidl

* nvmesh-raidlO0

* nvmesh-ec

* Before creating a FileSystem volume, see Important Notes and Known Issues.

Create a PersistentVolumeClaim of type RAID1

apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: nvmesh-raidl
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 3Gi

storageClassName: nvmesh-raidl

* This will default to a FileSystem Volume with ext4.

Create a Storage-Class for volumes with the XFS FileSystem

kind: StorageClass
apiVersion: storage.k8s.io/vl
metadata:

name: nvmesh-xfs-class
provisioner: nvmesh-csi.excelero.com
allowVolumeExpansion: true
volumeBindingMode: Immediate

parameters:

© 2021 Excelero, Inc., All Rights Reserved

Page 31 of 39

Excelero, Ltd.

vpg: DEFAULT CONCATENATED VPG
fsType: xfs

Create a volume from the XFS Storage-Class

apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: nvmesh-xfs-volume
spec:
accessModes:
- ReadWriteMany
resources:
requests:

storage: 3Gi

storageClassName: nvmesh-xfs-class

© 2021 Excelero, Inc., All Rights Reserved

NVMesh CSI Driver Guide - 1.2.1_en

Page 32 of 39

Excelero, Ltd.

4.4.4.5. Using a Custom VPG

NVMesh CSI Driver Guide - 1.2.1_en

Create a VPG in the NVMesh Management software named your_custom_vpg.
Create a Storage-Class that will refer to the VPG we just created.

kind: StorageClass
apiVersion: storage.k8s.io/vl
metadata:

name: nvmesh-custom-vpg

provisioner: nvmesh-csi.excelero.com

allowVolumeExpansion: true
volumeBindingMode: Immediate
parameters:

vpg: your custom vpg

Create a volume from the Storage-Class.

apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: nvmesh-custom-vpg-volume
spec:
accessModes:
- ReadWriteMany
resources:
requests:

storage: 15Gi

storageClassName: nvmesh-custom-vpg

© 2021 Excelero, Inc., All Rights Reserved

Page 33 of 39

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

4.4.4.6. Read Only Volume

How to Create a Read-Only NVMesh Volume & Populate it
with Data

This example describes how to create an NVMesh volume for use as a ReadOnlyMany Persistent Volume.
We will go over creating a Volume, populating it with data and then turn it into a ReadOnlyMany Volume.

* The following example uses volumeMode: Filesystem but the same applies for
volumeMode: Block.

Create a Storage Class with reclaimPolicy: Retain.

kind: StorageClass
apiVersion: storage.k8s.io/vl
metadata:

name: nvmesh-concatenated-retained
provisioner: nvmesh-csi.excelero.com
parameters:

set here the desired VPG

vpg: DEFAULT CONCATENATED VPG
set reclaimPolicy to retain so that the PV will not be deleted when it's PVC i
s deleted
reclaimPolicy: Retain
allowVolumeExpansion: true

volumeBindingMode: Immediate

Create a PVC for populating the volume with data.
This will create a new volume with accessMode ReadWriteOnce so we can write data into the volume.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: claim-populate-vol-with-data
spec:
accessModes:
- ReadWriteOnce
resources:
requests:

storage: 1Gi

© 2021 Excelero, Inc., All Rights Reserved Page 34 of 39

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

storageClassName: nvmesh-concatenated-retained

volumeMode: Filesystem

Create a pod to write the data to the volume.

Example: This pod will create a file with data.

apiVersion: vl
kind: Pod
metadata:
name: populate-vol-with-data
spec:
restartPolicy: OnFailure
containers:
- name: write-to-volume
image: centos:7
command: ["/bin/bash", "-c¢", "echo some-data > /data/data.txt"]
volumeMounts:
- name: data-volume
mountPath: /data/
volumes:
- name: data-volume
persistentVolumeClaim:

claimName: claim-populate-vol-with-data

* When the Pod is finished, delete the pod and also delete any workload using the PVC.

kubectl delete pod populate-vol-with-data

Delete the PVC.
As we used the storage-class with reclaimPolicy: retain, the PV will not be deleted by this action.

kubectl delete pvc claim-populate-vol-with-data

Edit the PersistentVolume Object.
Run this to find the PV created by the Claim:

kubectl get pv -o=custom-columns=NAME:.metadata.name,PVC:.spec.claimRef.name | grep claim-populate-
vol-with-data

© 2021 Excelero, Inc., All Rights Reserved Page 35 of 39

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

Edit the PV object by running:

kubectl edit pv <pv name>

Perform the following changes:

kind: PersistentVolume
apiVersion: vl
metadata:
name: pvc-£89b81c9-1c23-40c0-b3a7-eb70525c25ea
spec:
capacity:
storage: 1Gi

©3i g

accessModes:
change ReadWriteOnce to ReadOnlyMany
- ReadWriteOnce
- ReadOnlyMany
Remove claimRef so that the PV can be bounded again to a new PVC
#claimRef:
#
persistentVolumeReclaimPolicy: Retain
storageClassName: nvmesh-concatenated-retained

volumeMode: Filesystem

Create a PVC with ReadOnlyMany.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: claim-rom
spec:
accessModes:
- ReadOnlyMany
resources:
requests:
storage: 1Gi
storageClassName: nvmesh-concatenated-retained

volumeMode: Filesystem

Create a pod to read the data.

© 2021 Excelero, Inc., All Rights Reserved Page 36 of 39

Excelero, Ltd. NVMesh CSI Driver Guide - 1.2.1_en

Example Pod:
This pod will read the data. txt file and then try to delete the file printing the exit code (reading should
succeed and deletion should fail).

apiVersion: vl
kind: Pod
metadata:
name: read-data
spec:
restartPolicy: OnFailure
containers:
- name: read-data

image: centos:7

cmd: ["/bin/bash", "-c¢" ,"cat /data/data.txt ; rm /data/data.txt; echo exi
t code=57?"]
volumeMounts:

- name: data-volume
mountPath: /data/
volumes:
- name: data-volume
persistentVolumeClaim:

claimName: claim-rom

© 2021 Excelero, Inc., All Rights Reserved Page 37 of 39

Excelero, Ltd.

NVMesh CSI Driver Guide - 1.2.1_en

5. Document Reference

Typographical Conventions

Throughout this document, the following typographical conventions are followed:

Style

bold text

Meaning

The name of an Excelero software component or technology

A file name, command or configuration text that can be utilized in a Linux terminal/shell, file or as
a URL

text

term in
italics

Definitions

Generally, a term being used in specific relation to an element in the NVMesh

Throughout this document, these terms have the following meanings:

Term

Management
Server

Target Node/
Target

Client Node/
Client

Converged Node

Logical Volume/
Volume

RDDA

TOMA

© 2021 Excelero, Inc., All Rights Reserved

Definition

The server(s), or OS image(s) running the management module software

A physical server containing one or more NVMe SSDs running the storage target module

An OS image instance running the block storage client software

A target node that is also running the block storage client software

A logical block device defined with the NVMesh management module that can be
attached to client nodes

Remote Direct Drive Access. Excelero’s patented low-latency and CPU bypass transport
technology.

Topology Manager. The storage target module component that handles error detection
and volume rebuild activities.

Page 38 of 39

Excelero, Ltd.

6. Versions

NVMesh CSI Driver Guide - 1.2.1_en

Version Compatibility

NVMesh CSI Driver CSI Spec Kubernetes

0.9

1.0

1.2.0

1.2.1

© 2021 Excelero, Inc., All Rights Reserved

1.3.0

1.3.0

1.3.0

1.3.0

1.3.0

1.3.0

1.3.0

1.3.0

1.3.0

1

1

15

15

15-1.21

A7-1.21

A7-1.21

A7-1.21

A7-1.21

A7-1.21

A7-1.21

A7+

A7+

A7+

NVMesh

1.3

1.3.2

20

205-22

205-22

2.2

2.2

2.2

2.2

2.2

2.2+

2.2+

Page 39 of 39

	Table of Contents
	1. Copyright and Trademark Information
	2. Preface
	AUDIENCE
	NON-DISCLOSURE REQUIREMENTS
	FEEDBACK
	INFORMATION ABOUT THIS DOCUMENT

	3. Introduction
	4. Kubernetes
	4.1. Quick Start Guides
	4.1.1. Install & Configure
	Deploy the NVMesh CSI Driver
	Using helm
	Using kubectl (without helm)
	Configure

	4.1.2. Create PVC and POD
	Prerequisite
	Create a PVC
	Create a POD

	4.2. Installation & Configuration
	Installation
	Using helm
	Using kubectl (without helm)

	Configuration
	Edit Management Server Address
	Edit Management Server Username and Password

	4.3. Uninstall
	4.4. Usage
	4.4.1. Creating a PersistentVolumeClaim
	Access Modes (accessModes)
	Volume Mode (volumeMode)
	Request Storage (resources.requests.storage)
	Storage Class Name (storageClassName)

	4.4.2. Multiple NVMesh Clusters & Topology
	Introduction
	Configuration
	Creating Volumes and Pods
	Create a PVC and a Pod
	Assign the PVC / Pod to a zone using a StorageClass with the topology field
	Multiple allowedTopologies

	Assign a PVC or Pod to a zone using the Pod’s nodeAffinity
	PVC with volumeBindingMode: Immediate

	References

	4.4.3. Important Notes and Known Issues
	AccessMode
	FileSystem Volumes

	4.4.4. Examples
	4.4.4.1. Static Provisioning
	Create NVMesh Volume
	Create a PersistentVolume in Kubernetes
	Create a PersistentVolumeClaim
	Create a Pod that uses the Volume

	4.4.4.2. Storage Class
	Provisioner
	Allow Volume Expansion (allowVolumeExpansion)
	Volume Binding Mode (volumeBindingMode)
	Mount Options (mountOptions)
	Parameters

	4.4.4.3. Block Volume
	Create a Raw Block Volume (Kubernetes 1.14 or higher)

	4.4.4.4. File System Volume
	Create a PersistentVolumeClaim of type RAID1
	Create a Storage-Class for volumes with the XFS FileSystem
	Create a volume from the XFS Storage-Class

	4.4.4.5. Using a Custom VPG
	4.4.4.6. Read Only Volume
	How to Create a Read-Only NVMesh Volume & Populate it with Data

	5. Document Reference
	Typographical Conventions
	Definitions

	6. Versions
	Version Compatibility

