
User Guides
3.7 — Last update: Jun 09, 2022

Suresofttech

Copyright © 2022 Suresofttech

Table of Contents
1. Target Test Guides .. 2

1.1. Texas Instruments Code Composer Studio .. 3
1.2. STM32cubeIDE .. 5

2. Debugger User Guides .. 14
2.1. Lauterbach TRACE32 .. 15

2.1.1. Supported target list that can generate cmm script automatically 16
2.1.2. Step1: Setting target environment in Controller Tester ... 17
2.1.3. Step2: Run the target test .. 18
2.1.4. Debug the target test ... 19

2.2. PLS Universal Debug Engine (UDE)... 20
2.2.1. Step1: Create a workspace in UDE IDE ... 21
2.2.2. Step2: Setting target environment in Controller Tester ... 23
2.2.3. Step3: Run the target test .. 24
2.2.4. Debug the target test ... 25

2.3. iSYSTEM winIDEA Debugger ... 26
2.3.1. Preparation for use of iSYSTEM winIDEA .. 27
2.3.2. Step1: Creating and setting up a winIDEA workspace .. 28
2.3.3. Step2: Setting target environment in Controller Tester ... 33
2.3.4. Step3: Run the target test .. 34
2.3.5. Debug the target test ... 35

2.4. IAR Embedded Workbench C-SPY Debugger .. 36
2.4.1. Step1: Creating an IAR embedded workbench project ... 37
2.4.2. Step2: Setting an IAR project ... 38
2.4.3. Step3: Setting target environment in Controller Tester ... 41
2.4.4. Step4: Run the target test .. 42
2.4.5. Debug the target test ... 43

2.5. Texas Instruments Code Composer Studio (CCS v4 and later)... 44
2.5.1. Step1: Create a project in Code Composer Studio ... 45
2.5.2. Step2 : Setting target environment in Controller Tester .. 47
2.5.3. Step3: Run the target test .. 50
2.5.4. Debug the target test ... 51

2.6. Microchip MPLAB IDE .. 52
2.6.1. Step1: Debugger script settings ... 53
2.6.2. Step2: Setting target environment in Controller Tester ... 54
2.6.3. Step3: Run the target test .. 55

3. Target Build Guide .. 56
3.1. IAR Embedded Workbench IDE ... 57
3.2. Texas Instruments Code Composer Studio .. 59
3.3. CodeWarrior IDE.. 61
3.4. Hightec Development Platform IDE .. 62
3.5. Tasking VX IDE.. 63
3.6. Renesas CS+ IDE .. 64

3.7. MPLAB X IDE... 66
3.8. Microsoft Visual Studio... 67
3.9. GNU Compiler .. 68

4. Sharing Projects with Other Users ... 69
4.1. (Ver.3.3 or later) Guide to Share Projects... 70

4.1.1. Export project .. 71
4.1.2. Import project... 73

4.2. (Ver.3.2 or earlier) Guide to Share RTV Projects .. 78
4.2.1. Project sharing scenario... 79
4.2.2. RTV server user guide ... 82

5. Identifying the Cause of a Test Error ... 83

6. Source Code Modification and Test Reconfiguration.. 85
6.1. Run [Test Reconfiguration]... 86
6.2. In Cases of Detected Modification Automatically .. 92
6.3. In Cases of Undetected Modification Automatically .. 96

7. Navigate Source Codes... 97

8. Guides for C++ Test Using the Class Factory View... 99
8.1. Basic Concept for C++ Test ... 100
8.2. Using the Object Creation Code of Abstract Class for Testing .. 101
8.3. Design C++ Tests Using Class Factory .. 102
8.4. Using Mock Objects in C++ Test .. 103

8.4.1. Creating mock objects.. 104
8.4.2. Generate specifications about mock objects .. 105

9. Virtual Address Usage Guide.. 108

10. Guides to Import Coverages ... 112
10.1. Import Coverages by Version ... 113
10.2. Import Coverages by Conditional Operation Option .. 114
10.3. Import Coverages by Coverage Type ... 115

1. Target Test Guides
This user guides document describes how to execute target tests using CodeScroll Controller Tester.

• Texas Instruments Code Composer Studio
• STM32cubeIDE

Suresofttech User Guides - 3.7_en

Page 2 of 115

1.1. Texas Instruments Code Composer
Studio

1. Creat a CodeScroll Controller Tester project.

2. Select a created Code Composer Studio toolchain.

3. Select source files to test.

Suresofttech User Guides - 3.7_en

Page 3 of 115

4. When finish the settings, click [Finish] button to create the project.

5. To use debuggers, set up in Code Composer Studio and CodeScroll Controller Tester. For more
information, refer to Texas Instruments Code Composer Studio, a sub-topic of Controller Tester
Debugger User Guides in this document.

Suresofttech User Guides - 3.7_en

Page 4 of 115

1.2. STM32cubeIDE
This document describes how to perform target testing using STM32cubeIDE for STM32 family targets.

The application example environment is as follows, and ST-Link debugger is used.

Target test application and execution order
1. Setting Target environment

- On [right click on project] -> [properties] -> [Target test] -> [Target environment Setting], Just fill out the
Property Analysis tab and close it after applying. The target test document is a manual build method, so
other tabs do not affect the test.

2. Execute test case unit with [Run Target Test Case]

Suresofttech User Guides - 3.7_en

Page 5 of 115

- For accurate testing, run them in test cases.

- If you go through steps 1 and 2, the project of Controller Tester will be locked as above.

Suresofttech User Guides - 3.7_en

Page 6 of 115

3. Clean and build the project in STM32cubeIDE

- Clean the exported source in STM32cubeIDE and build it.

4.Debug in STM32cubeIDE

- If the build is successful, run debug.

5. Execute after setting a break point in return 0;

Suresofttech User Guides - 3.7_en

Page 7 of 115

- The starting point of the code is main in cs_tfx.c. Put a break point before ‘return 0;’, which is the point
at which testrun(); ends.

6. Check the log in the ct_target_log expression view

- In the expression view, click Add new expression to add an array containing the log (ct_target_log).

Suresofttech User Guides - 3.7_en

Page 8 of 115

- You can check the contents of ct_target_log as above.

7. Check if it ends with CSET# (whether or not a normal test is performed)

- When the last part of the log ends with CSET#, it can be judged that the test ended normally.
Therefore, you can check once whether the test is running normally in the expression view.

8. Add ct_target_log to monitor memory in memory view

Suresofttech User Guides - 3.7_en

Page 9 of 115

- Add ct_target_log by clicking ‘+’ to Monitors in memory view for memory dump.

9. Export from memory view to log path of Controller Tester project / Check if the file is normally created
in the path

- Click the export button in the memory view to download the memory of ct_target_log to a file.
- Format is RAW Binary, Start address is the start address of ct_target_log of expression view, and
Length specifies the array size of ct_target_log. (Even if the length of the log is shorter than Length, it
does not affect the test.)

Suresofttech User Guides - 3.7_en

Page 10 of 115

- Check if the file is normally created in the specified path.

10. Restoring source file from Controller Tester

- Restore the source file from Controller Tester to get the target test log.

11. Import Target Test Log -> Import from Log File

Suresofttech User Guides - 3.7_en

Page 11 of 115

- Click [Import Target Test Log] -> [Import from Log File]

- Import the file created in step 9.

Suresofttech User Guides - 3.7_en

Page 12 of 115

- You can confirm that the test case was successfully executed and the coverage was measured.

Suresofttech User Guides - 3.7_en

Page 13 of 115

2. Debugger User Guides
This user guides document describes how to use debugger when executing CodeScroll Controller Tester
target test.

• Lauterbach TRACE32
• PLS Universal Debug Engine
• iSYSTEM winIDEA Debugger
• IAR Embedded Workbench C-SPY Debugger
• Texas Instruments Code Composer Studio
• Microchip MPLAB IDE

Suresofttech User Guides - 3.7_en

Page 14 of 115

2.1. Lauterbach TRACE32
Controller Tester can target test using the TRACE32 debugger.
Controller Tester uses TRACE32’s cmm script to run tests in the target environment and get the results.
A list of targets supported by TRACE32 can be found on the Lauterbach homepage.

• Supported target list that can generate cmm script automatically
• Step1: Setting target environment in Controller Tester
• Step2: Run the target test

Suresofttech User Guides - 3.7_en

Page 15 of 115

http://www.lauterbach.com/

2.1.1. Supported target list that can generate
cmm script automatically
Controller Tester automatically generates a cmm script file or receives it from the user.
If the cmm script can be generated automatically, you only need to enter the chip name of the target. If
you cannot generate cmm scripts automatically, you must enter the cmm script file path manually.
The targets that currently support the automatic generation of cmm scripts are:

PowerPC

mpc5554, mpc5553, mpc5534, mpc556x, mpc551x, mpc560xe, spc560bxx, spc560pxx,
spc560sxx, mpc560xb, mpc560xp, mpc560xs, spc563m54, mpc5632m, spc563m60,
mpc5633m, spc563m64, mpc5634m, mpc564xs, mpc5668, mpc5674, mpc5644a, spc564a80,
mpc5642a, spc564a70, mpc567xk, spc56hk, mpc5643l, spc56el60, spc56el70, mpc5644b,
mpc5644c, spc564b64, spc56ec64, mpc5645b, spc564b70, mpc5645c, spc56ec70, mpc5646b,
spc564b74, mpc5646c, spc56ec74, mpc5676r, spc56ap, mpc5746m, mpc5744k, spc574k74,
mpc5777m, spc57hm90, mpc574xp, mpc574xg, mpc574xr, mpc577xk, mpc5777c, spc570s,
mpc5726l, spc572l, spc574s, spc58ne, spc58eg, spc58nn, spc582b, spc58ec, spc58nh,
spc584b, s32r274, s32r264, s32r372

ARM

mkw01, mkw20, mkv30, mkv40, mkv10, mkv50, mkm30, mkl0, mkl10, mkl20, mkl30, mkl40,
mkl80, mk0, mk10, mk20, mk30, mk40, mk50, mk60, mk70, mk80, mac57d54h, mac71×1,
mac71×2, mac71×4, mac71×5, mac71×6, mac72×1, lpc51u68, lpc54xx, lpc8xx, lpc11xx,
lpc12xx, lpc13xx, lpc17xx, lpc18xx, lpc21xx, lpc22xx, lpc23xx, lpc24xx, lpc28xx, lpc29xx,
lpc40xx, lpc43xx, imxrt1064, xmc1100, xmc1200, xmc1300, xmc1400, xmc4100, xmc4200,
xmc4300, xmc4400, xmc4500, xmc4700, xmc4800, tle98, s3fm02g, s32k, s6e1a, s6e1c, s6j3

tricore
tc2dx, tc21x, tc22x, tc23x, tc26x, tc27x, tc29x, tc35x, tc37x, tc38x, tc39x, tc116x, tx1167,
tx1197, tc1724, tc1728, tc1736, tc1762, tc1764, tc1766, tc1767, tc1782, tc1784, tc1791, tc1792,
tc1793, tc1796, tc1797, tc1798

Suresofttech User Guides - 3.7_en

Page 16 of 115

2.1.2. Step1: Setting target environment in
Controller Tester
Select Debugger on the target environment setting page of the Controller Tester. Only a list of
debuggers supported is displayed, depending on the toolchain selected for the project.
Set the debugger to TRACE32.

The setting items are displayed according to the selected information. The items you need to set when
using the TRACE32 debugger are shown in the table below.
Some of the settings are required.

trace32_exe_file_path
TRACE32 executable file path. Each target has a different
executable file, so you need to make sure that the target
executable is the correct one. Required

target_binary_path
Path to the binary file for loading into the target environment.
Check and enter the path where the target binary file is created in
your IDE or build script. Required.

chip
Enter the chip name of the target you are using. It is used when
auto-generating a cmm script, so you need to enter the correct chip
name.

user_defined_cmm_script_file_path

Custom cmm script file path. For targets that do not support
automatic generation of cmm scripts, you must write a script to set
the debugger and target usage environment, or enter the path to
the cmm script file you are using.

Suresofttech User Guides - 3.7_en

Page 17 of 115

2.1.3. Step2: Run the target test
You must exit the running TRACE32 program before running the target test.
You can run a target test by selecting [Run Target Test] from the project context menu in the Test
Navigator view or by clicking the [Run] button in the Test View.

• [Run Target Test]

• [Run]

When you run the target test, the TRACE32 program runs. If the test is succeeded, the
TRACE32 program ends automatically.*

Suresofttech User Guides - 3.7_en

Page 18 of 115

2.1.4. Debug the target test
1. After setting it as a target, right-click the test case in the ‘Unit Test’ view and click ‘Check Debug

Information’
2. Build the user project directly or execute the build script registered in the ‘target environment’

setting in the controller tester project
3. Verify that the build was successful
4. Restore the original source by opening the project in Controller Tester
5. After running Trace32, open the cmm script file (start.cmm) and execute ‘debug’

(Controller_Tester_project_path/.csdata/target/start.cmm)
6. Click the ‘step’ button to go to the first line of the target.cmm script
7. Add breakpoint to ‘Go.Hll’ in target.cmm file
8. Click ‘Var’ > ‘Show Function’
9. Double-click after searching for the function to be tested

10. Add breakpoint at the beginning of the function
11. Click the ‘step’ button and confirm that the debugging point moves to the location specified in step

10.
12. ‘Var’ > ‘Show Local…’ . Click to confirm that the value of the local variable changes
13. Run up to the debugging point

Suresofttech User Guides - 3.7_en

Page 19 of 115

2.2. PLS Universal Debug Engine (UDE)
Controller Tester can target test using the UDE debugger.
Controller Tester uses debugging scripts supported by UDE to run tests and get results in the target
environment.
A list of targets available for connection to UDE can be found on the PLS homepage.

Controller Tester uses the UDE workspace information to perform target tests. For this reason, users
must first create a workspace before performing a target test.

• Step1: Create a workspace in UDE IDE
• Step2: Setting target environment in Controller Tester
• Step3: Run the target test

Suresofttech User Guides - 3.7_en

Page 20 of 115

https://www.pls-mc.com/products.html

2.2.1. Step1: Create a workspace in UDE IDE
UDE can generate UDE workspaces from the UDE desktop IDE.

1. Create the workspace by selecting the configuration file suitable for the target used.

2. Click the [File]> [Load Program] button to load the binary file. At this point, select the binary file
built from the test code.

Suresofttech User Guides - 3.7_en

Page 21 of 115

3. Follow the instructions and press the [program] button to load the binary file into the target
according to the target settings. If the load completes successfully, the workspace setup is
complete. Click [Exit] to exit the dialog.

See the manual provided by UDE for details.

Suresofttech User Guides - 3.7_en

Page 22 of 115

2.2.2. Step2: Setting target environment in
Controller Tester
Select Debugger on the Target Environment configuration page of the Controller Tester. Only a list of
debuggers supported is displayed, depending on the toolchain selected for the project.
Set the debugger to UDE.

The setting items are displayed according to the selected information. The items you need to set when
using the UDE debugger are shown in the table below.
Some of the settings are required.

target_binary_path
Path to the binary file for loading into the target environment. Check and enter the
path where the target binary file is created in your IDE or build script. Required.

ude_project_file Path to the workspace project file (.wsx) generated by the UDE IDE. Required.

The default scripting language used by Controller Tester is visual basic script.
When the target configuration is complete, click the [OK] or [Finish] button. You are ready to execute the
target test.

Suresofttech User Guides - 3.7_en

Page 23 of 115

2.2.3. Step3: Run the target test
You must have exited the UDE desktop IDE to run the target test.
You can run a target test by selecting [Run Target Test] from the project context menu in the Test
Navigator view or by clicking the [Run] button in the Test View.

• [Run Target Test]

• [Run]

UDE debugging scripts can be written in languages such as C ++, .NET, and Perl. See
the UDE Automation Basics documentation included in the UDE manuals for other
supported languages that can be scripted.
*

Suresofttech User Guides - 3.7_en

Page 24 of 115

2.2.4. Debug the target test
1. After setting it as a target, right-click the test case in the ‘Unit Test’ view and click ‘Check Debug

Information’
2. Build the user project directly or execute the build script registered in the ‘target environment’

setting in the controller tester project
3. Verify that the build was successful
4. Restore the original source by opening the project in Controller Tester
5. Select project after executing Pls Ude (.wsx file)
6. Select the output file built in step.2
7. Notice that the source file and function information contained in the output file are displayed on the

left navigation.
8. Select a source file containing the function to be tested and add breakpoints in the function
9. Press F5 to start from the entry point

Suresofttech User Guides - 3.7_en

Page 25 of 115

2.3. iSYSTEM winIDEA Debugger
Controller Tester provides the ability to run tests on your target environment and get results from it
automatically by using winIDEA debugging scripts.
The list of targets supported by winIDEA can be found on the iSYSTEM home page.

The execution of the debugging script requires the python SDK installed together when installing
winIDEA. If it is not installed, you can download it from the iSYSTEM SDK installation page. Also, you
should check the version of winIDEA you use if it supports the SDK. The debugging script provided by
Controller Tester is based on python 3.3.

This document describes the process from creating a project in winIDEA to running a target test in
Controller Tester. The iSYSTEM BlueBox iC5000 Unit debugger and NXP’s MPC56xx target are used for
the examples.

• Preparation for use of iSYSTEM winIDEA
• Step1: Creating and setting up a winIDEA workspace
• Step2: Setting target environment in Controller Tester
• Step3: Run the target test

Suresofttech User Guides - 3.7_en

Page 26 of 115

https://www.isystem.com/support/supported-chips-overview.html
https://www.isystem.com/support/supported-chips-overview.html

2.3.1. Preparation for use of iSYSTEM
winIDEA
Target testing with winIDEA in Controller Tester requires a debugger that winIDEA supports.
Before running the target test, you need to create a winIDEA workspace and connect the debugger for
use to the PC with Controller Tester.

Suresofttech User Guides - 3.7_en

Page 27 of 115

2.3.2. Step1: Creating and setting up a
winIDEA workspace

1. After running winIDEA, create a new workspace by selecting [File]> [Workspace]> [New
Workspace …] from the top menu. Additional workspace settings are required to use the
workspace you create for the Controller Tester target test.

2. First, go to the top menu, select [Hardware]> [Hardware…], and then select the type of the
connected BlueBox in the [Hardware Type] tab.

Suresofttech User Guides - 3.7_en

Page 28 of 115

3. Next, set the communication method in the [Communication] tab, and press the [Test] button to
check the connection to the debugger. Please refer to the iSYSTEM BlueBox manual for
instructions on how to connect the debugger device depending on the communication method.

4. Click [Hardware]> [Use Software Breakpoints] on the top menu to activate it, and then select the
target type to use in the [CPU] of [Hardware]> [Emulation Options…].

Suresofttech User Guides - 3.7_en

Page 29 of 115

5. After the debugger setup is complete, you need to register the binary path of the software under
test in the workspace. First, build the source code under test to generate the binary. Then from
winIDEA’s top menu [Debug]> [Files for Download …], select [New…] and add the binary
generated.

The specific options you need to set for each target may vary.*

Suresofttech User Guides - 3.7_en

Page 30 of 115

6. When everything is set up, save the workspace to create a winIDEA workspace file (.xjrf). The
workspace file is used to configure the target test using winIDEA in Controller Tester.

Suresofttech User Guides - 3.7_en

Page 31 of 115

You are now finished creating the winIDEA workspace for the target test.

Suresofttech User Guides - 3.7_en

Page 32 of 115

2.3.3. Step2: Setting target environment in
Controller Tester
Select a debugger in the [New Project] wizard of the target test project or [Target environment settings]
of the project properties on Controller Tester. The list of selectable debuggers depends on the toolchain
selected for the project.
Set the debugger to BlueBox.

The fields to be set are displayed according to the selection. If you are using BlueBox, the fields are
shown in the table below.
Required fields are displayed in red in Controller Tester.

winidea_binary_path The winIDEA execution file(winIDEA.exe) path. Required.

winidea_workspace_file_path The path of the workspace file (.xjrf) created by winIDEA. Required.

The default scripting language provided by Controller Tester is python. If you use a custom debugging
script, you need to write it in python to work properly. If you write in other languages, refer to the
iSYSTEM homepage to install additional SDKs.

When the target environment settings are complete, click the [OK] or [Finish] button. Now you are ready
to run the target test.

Suresofttech User Guides - 3.7_en

Page 33 of 115

https://www.isystem.com/downloads/isystem-connect-sdk.html

2.3.4. Step3: Run the target test
You can run a target test by selecting [Run Target Test] from the project context menu in the Test
Navigator view or by clicking the [Run] button in the Test View.

• [Run Target Test]

• [Run]

Target tests cannot be run if winIDEA is running. You must exit winIDEA before running
the target test in Controller Tester.*

Suresofttech User Guides - 3.7_en

Page 34 of 115

2.3.5. Debug the target test
1. After setting it as a target, right-click the test case in the ‘Unit Test’ view and click ‘Check Debug

Information’
2. Build the user project directly or execute the build script registered in the ‘target environment’

setting in the controller tester project
3. Verify that the build was successful
4. Restore the original source by opening the project in Controller Tester
5. After running winIDEA, select the workspace containing the built project (.xjrf file)
6. Download to binary file target by selecting [Debug]> [Download]
7. Debugging mode by pressing the Run button at the top
8. Double-click [Project]> [Functions], move to the function location, and set the debugging point

where you want
9. Press F5 to proceed debugging

Suresofttech User Guides - 3.7_en

Page 35 of 115

2.4. IAR Embedded Workbench C-SPY
Debugger
Controller Tester provides the ability to automatically run tests and get results in the target environment
through the IAR Embedded Workbench C-SPY debugging function.
The list of targets supported by C-SPY can be found on the IAR website.

To test a target with the IAR Embedded Workbench C-SPY in the Controller Tester, you need a C-SPY
compatible debugging probe. You need to create an IAR Embedded Workbench project and connect the
debugging probe to be used with the PC where Controller Tester is installed before performing the target
test.

The list of debugging probes provided by IAR can be found on the homepage.

• Step1: Creating an IAR embedded workbench project
• Step2: Setting an IAR project
• Step3: Setting target environment in Controller Tester
• Step4: Run the target test

Suresofttech User Guides - 3.7_en

Page 36 of 115

https://www.iar.com/device-search/#!?tab=devices
https://www.iar.com/iar-embedded-workbench/add-ons-and-integrations/in-circuit-debugging-probes/

2.4.1. Step1: Creating an IAR embedded
workbench project

1. Click [File]> [New Workspace] to create a new workspace and then click [Project]> [Create New
Project…] to create a project file (.ewp). When a project file created, the project name is displayed
in the [Workspace] view of the IAR Embedded Workbench.

2. Next, you need to add the source files under test to the project. Right-click on the project, click
[Add]> [Add Files…] and add the source files to be tested. The added source files are displayed in
a hierarchical structure in [Workspace] view.

Suresofttech User Guides - 3.7_en

Page 37 of 115

2.4.2. Step2: Setting an IAR project
If you created a project, you need to configure the project to use the C-SPY debugging feature. Right-
click on the created project and select [Options …].

1. First, set [Processor variant] in [General Options]. For example, for ARM’s STM32F429IG target,
select Device and select a name that matches the target from the target list on the right.

2. Second, go to the category [Debugger] and select the debugging probe you want to use in the
[Driver] field. Set the details in the Debugging Probe section at the bottom of the [Debugger]
category, depending on how the selected debugging probe and PC are connected.

Suresofttech User Guides - 3.7_en

Page 38 of 115

3. If I-jet is selected, select [I-jet] at the bottom of the [Debugger] category to set details. For a
description of each setting tab, refer to the IAR debugger manual you want to use.

Suresofttech User Guides - 3.7_en

Page 39 of 115

Now you are done creating and setting the IAR project for target testing.

Suresofttech User Guides - 3.7_en

Page 40 of 115

2.4.3. Step3: Setting target environment in
Controller Tester
Select a debugger in the [New Project] wizard of the target test project or [Target environment settings]
of the project properties on Controller Tester. The list of selectable debuggers depends on the toolchain
selected for the project.
When creating a project using the IAR toolchain, the debugger must be set to ide to use the IAR C-SPY
debugging feature.

The fields to be set are displayed according to the selection. The fields for C-SPY are as shown in the
table below.
Required fields are displayed in red in Controller Tester.

cspy_debug_general_xcl_file_path

The path to the debug.general.xcl file required when using the IAR
Embedded Workbench C-SPY debugger. When creating an IAR
project, the project file (.ewp) is automatically created in the [setting]
folder in the saved location. Required.

cspy_debug_driver_xcl_file_path

Path to the debug.driver.xcl file required when using the IAR
Embedded Workbench C-SPY debugger. When creating an IAR
project, the project file (.ewp) is automatically created in the [setting]
folder in the saved location. Required.

When the target environment settings are complete, click the [OK] or [Finish] button. Now you are ready
to run the target test.

Suresofttech User Guides - 3.7_en

Page 41 of 115

2.4.4. Step4: Run the target test
You can run a target test by selecting [Run Target Test] from the project context menu in the Test
Navigator view or by clicking the [Run] button in the Test View.

• [Run Target Test]

• [Run]

Suresofttech User Guides - 3.7_en

Page 42 of 115

2.4.5. Debug the target test
1. After setting it as a target, right-click the test case in the ‘Unit Test’ view and click ‘Check Debug

Information’
2. Build the user project directly or execute the build script registered in the ‘target environment’

setting in the controller tester project
3. Verify that the build was successful
4. After IAR Workbench run, select the workspace containing the built project (.eww file)
5. Select the source file with the function to be tested in the workspace view, and click the left side of

the line to add the debugging point
6. Right-click the project in the workspace view and open ‘Options …’ to check the Run to option

check in the Debugger item and check that it is designated as ‘main’
7. Click the Download and Debug button at the top to start from main
8. Press F5 to proceed to the debugging point to debug

Suresofttech User Guides - 3.7_en

Page 43 of 115

2.5. Texas Instruments Code Composer
Studio (CCS v4 and later)
Controller Tester can run target tests using the Code Composer Studio debugger. Controller Tester uses
debugging scripts supported by Code Composer Studio (since version 4.x) to run the tests in target
environment and get results. Check the Code Composer Studio manual for a list of debugging devices
you can connect to and use with Code Composer Studio.

This document describes how to use Code Composer Studio debugger with following three steps.

• Step1: Create a project in Code Composer Studio
• Step2 : Setting target environment in Controller Tester
• Step3: Run the target test

The example uses Spectrum Digital’s XDS560v2 as a debugger and Texas Instruments’ TMS320 as
target device.

Suresofttech User Guides - 3.7_en

Page 44 of 115

2.5.1. Step1: Create a project in Code
Composer Studio

1. Run Code Composer Studio and create a new project. Select [File]-[New] from the top menu and
select the desired project type. In this case, click [CCS Project] to create a project. After entering
the target and debugger information used, click [Verify] to confirm that the connection is
successful.

2. After verifying the debugger and target connections, enter the remaining settings. The example
uses the C2000 Ti compiler. When you click [Finish], the CCS project is created in the workspace.

Suresofttech User Guides - 3.7_en

Page 45 of 115

Code Composer Studio supports several more debuggers in addition to the built-in debuggers from
Texas Instruments.

1. TI XDS USB (Code Composer Studio default)
2. BlackHawk JTAG emulator
3. Spectrum digital
4. MSP430 USB
5. MSP432 USB
6. Tiva/Stellaris ICDI

Controller Tester controls the debugger supported by Code Composer Studio with javascript. You can
select the target and debugger details from the Project Settings screen in Code Composer Studio.

Suresofttech User Guides - 3.7_en

Page 46 of 115

2.5.2. Step2 : Setting target environment in
Controller Tester

1. Creat a CodeScroll Controller Tester project. For more information to create the project, refer to
Texas Instruments Code Composer Studio in this document.

2. Right-click on the project in test navigator view and select [Properties] – [Target test] – [Target
environment settings]. You can set up target environment in [Target environment settings]. Setting
fields and the list of selectable debuggers depend on the toolchain selected for the project.

3. Select a debugger in [Target environment settings] of Controller Tester. This example selects IDE
debugger to use Code Composer Studio debugger.

4. Enter needed informations on [Build] tab of [Target environment settings] for Code Composer
Studio build. Following fields need to be filled and these are necessary.

• Fileds of [Build] tab

ide_directory_path Directory path of Code Composer Studio ex) C:\ti\ccs930

workspace Directory path of Code Composer Studio workspace

project_name Project name analyzed by Controller Tester

5. Enter needed informations on [Run] tab of [Target environment settings] for running target tests.

Suresofttech User Guides - 3.7_en

Page 47 of 115

Following fields need to be filled and these are necessary.

• Fields of [Run] tab

ccxml_path
Enter a path of Code Composer Studio target configuration file. Check the
project path and target name. File name is the target name selected in
Code Composer Studio ex) project-path\targetConfig\target-name.ccxml

target_binary_path
Enter a path of binary file created during build in Code Composer Studio.
ex) project-path\Debug\project-name.out

debug_probe
Refer to front of ‘/’ in [Device] of Code Composer Studio properties and
enter a target device name. (Spectrum Digital XDS560V2 STM USB
Emulator in example shown below)

cpu_name
Refer to back part of ‘/’ in [Device] of Code Composer Studio properties
and enter a target device name. (C28xx in example shown below)

• Code Composer Studio properties
◦ Right-click Code Composer Studio project and select [Properties] – [Debug] – [Device]

When only one debugger is connected to the target, debug_probe can be left as the*

Suresofttech User Guides - 3.7_en

Page 48 of 115

6. After finishing target environment settings, click [Finish] button. You are ready to do target tests.

default (*). For single core cpu, you do not need to set cpu_name.

Suresofttech User Guides - 3.7_en

Page 49 of 115

2.5.3. Step3: Run the target test
Before running the target test, you should stop using the workspace where the project you want to build
is located. If you are using a workspace in the IDE, target testing does not work properly.
You can run a target test by selecting [Run Target Test] from the project context menu in the Test
Navigator view or by clicking the [Run] button in the Test View.

• [Run Target Test]

• [Run]

If Code Composer Studio is running during target test execution, a compilation error
occurs.

!

For more information on debug scripting in CCS, see the Texas Instruments home page.*

Suresofttech User Guides - 3.7_en

Page 50 of 115

https://software-dl.ti.com/ccs/esd/documents/users_guide/index_debug.html

2.5.4. Debug the target test
1. After setting it as a target, right-click the test case in the ‘Unit Test’ view and click ‘Check Debug

Information’.
2. Run in debugging mode in Code Composer Studio.
3. Click [File] > [Open] File in Code Composer Studio.
4. Select the source file_number.c file with the function to be debugged in the

Controller_Tester_workspace_path/.metadata/.plugins/com.codescroll.ut.embedded/project_name/
TestFixture/cs

5. Add breakpoint where you want to debug
6. Run Debug

Suresofttech User Guides - 3.7_en

Page 51 of 115

2.6. Microchip MPLAB IDE
This document describes how to run target tests using the Microchip MPLAB IDE in three steps.

• Step1: Debugger script settings
• Step2: Setting target environment in Controller Tester
• Step3: Run the target test

Suresofttech User Guides - 3.7_en

Page 52 of 115

2.6.1. Step1: Debugger script settings
In order to perform the target test in Controller Tester, the mdb.bat file included in MPLAB must be
modified so that the log output from the debugger can be saved in a file format.
The mdb.bat file path is as follows.

For windows 32 bit

• C:\Program Files\Microchip\MPLABX\vn.nn\mplab_ide\bin\mdb.bat

For windows 64 bit

• C:\Program Files (x86)\Microchip\MPLABX\vn.nn\mplab_ide\bin\mdb.bat

Modify the code in the last line of the mdb.bat file as follows.

before modification

"%jdkhome:exe =exe%" -Dfile.encoding=UTF-8 -jar "%mdb_jar%" %1

after modification

call "%jdkhome:exe =exe%" -Dfile.encoding=UTF-8 -jar "%mdb_jar%" %1 >> %CT_TAR
GET_PATH%\mdb_log.txt

Microchip MPLAB has a Korean encoding issue, so you should not include Korean in the
Controller Tester workspace or project name.

!

Suresofttech User Guides - 3.7_en

Page 53 of 115

2.6.2. Step2: Setting target environment in
Controller Tester
Select the debugger in the target test project creation wizard in Controller Tester or in the target
environment settings in the project properties. The list of debuggers to choose from depends on the
toolchain selected when creating the project.
Set the debugger to ide.

Setting items are displayed according to the selected information.
Required fields are displayed in red in Controller Tester.

ide_directory_path The path to the directory where Mplab ide is installed. Required.

project_directory_path The directory path of the project. Required.

make_path
The path to the make.exe file. Just enter the path to make.exe used when
building in the mplab project. Required.

target_binary_path
Binary file to be uploaded to the target (binary location generated during build).
Required.

debugger_tool
You can select the debugger tool information (select among ICD3, RealICE, PICkit3,
SIM, PM3, LicensedDebugger, LicensedProgrammer, SK). Required.

chip Product name of the chip under test (ex..dsPIC33EP512MU814). Required.

In order to perform the target tests in Controller Tester, the mdb.bat file must be modified as in Step1.
When the target environment setting is finished, click the [OK] or [Finish] button. You are ready to
perform target testing.

Suresofttech User Guides - 3.7_en

Page 54 of 115

2.6.3. Step3: Run the target test
You can run a target test by selecting [Run Target Test] from the project context menu in the Test
Navigator View or clicking the [Run] button in the Test View.

• [Run Target Test]

• [Run]

Suresofttech User Guides - 3.7_en

Page 55 of 115

3. Target Build Guide
CodeScroll Controller Tester guides you through building target test code using target project
information.

• IAR Embedded Workbench IDE
• Texas Instruments Code Composer Studio
• CodeWarrior IDE
• Hightec Development Platform IDE
• Tasking VX IDE
• Renesas CS+ IDE
• MPLAB X IDE
• Microsoft Visual Studio
• GNU Compiler

Suresofttech User Guides - 3.7_en

Page 56 of 115

3.1. IAR Embedded Workbench IDE
The target preference page is automatically filled in according to the tool chain selected by the user. The
type of debugger you can choose depends on your toolchain analysis settings.

To build an IAR Embedded Workbench, enter the required information in the Analysis and Build tab of
the target preferences and click Done.
The contents to be filled out are as shown in the table below, which is mandatory.

• Analysis tab

cpu CPU of target that can be selected from Core of Processor variant

• Build tab

ide_directory_path
Installation path of the IAR Embedded Workbench IDE ex. C:\Program
Files (x86)\IAR Systems\Embedded Workbench 8.4

project_file_path Project file (.ewp) path of IAR Embedded Workbench

If you click the Done button on the target preference page without writing all the contents or if the path
has been changed, you can set it again at ‘Right click on the project in the test navigator-> Properties->
Test target-> Target environment’.

After setting the target environment and clicking the Run button in the unit test view, the controller tester
builds the target test code.

When using the IO function of stdio.h, it is necessary to change the library settings.
Right click on the project in the workspace -> Options -> General Options -> Library
Configuration -> Library tab and change it to Full.
*

Suresofttech User Guides - 3.7_en

Page 57 of 115

Suresofttech User Guides - 3.7_en

Page 58 of 115

3.2. Texas Instruments Code Composer
Studio
The target preference page is automatically filled in according to the tool chain selected by the user. The
type of debugger you can choose depends on your toolchain analysis settings.

To build an Code Composer Studio, enter the required information in the Build tab of the target
preferences and click Done.
The contents to be filled out are as shown in the table below, which is mandatory.

• Build tab

ide_directory_path Directory path of Code Composer Studio ex.C:\ti\ccs930

workspace Path to workspace directory in Code Composer Studio

project_name
The name of the Code Composer Studio project to be analyzed by
Controller Tester

If you click the Done button on the target preference page without writing all the contents or if the path
has been changed, you can set it again at ‘Right click on the project in the test navigator-> Properties->
Test target-> Target environment’.

After setting the target environment and clicking the Run button in the unit test view, the controller tester

Suresofttech User Guides - 3.7_en

Page 59 of 115

builds the target test code.

If Code Composer Studio is running during execution, a compile error occurs.!

Suresofttech User Guides - 3.7_en

Page 60 of 115

3.3. CodeWarrior IDE
The target preference page is automatically filled in according to the tool chain selected by the user. The
type of debugger you can choose depends on your toolchain analysis settings.

To build an CodeWarrior project, enter the required information in the Build tab of the target preferences
and click Done.
The contents to be filled out are as shown in the table below, which is mandatory.

• Build tab

ide_directory_path
Path to CodeWarrior IDE ex. C:\Program Files (x86)\Freescale\CW for
MPC55xx and MPC56xx 2.10, C:\Freescale\CW MCU

ide_version Classic or Eclipse(for MCUs)

project_file_path
In the case of Classic, the .mcp file named when creating the project, and
in Eclipse, the .project file created when creating the project.

If you click the Done button on the target preference page without writing all the contents or if the path
has been changed, you can set it again at ‘Right click on the project in the test navigator-> Properties->
Test target-> Target environment’.

After setting the target environment and clicking the Run button in the unit test view, the controller tester
builds the target test code.

Suresofttech User Guides - 3.7_en

Page 61 of 115

3.4. Hightec Development Platform IDE
The target preference page is automatically filled in according to the tool chain selected by the user. The
type of debugger you can choose depends on your toolchain analysis settings.

To build an Hightec IDE project, enter the required information in the Build tab of the target preferences
and click Done.
The contents to be filled out are as shown in the table below, which is mandatory.

• Build tab

ide_directory_path Path to Hightec IDE ex. C:\HIGHTEC\toolchains\arm\v4.6.5.0

project_directory_path Path of project directory created by HighTec IDE

If you click the Done button on the target preference page without writing all the contents or if the path
has been changed, you can set it again at ‘Right click on the project in the test navigator-> Properties->
Test target-> Target environment’.

After setting the target environment and clicking the Run button in the unit test view, the controller tester
builds the target test code.

Suresofttech User Guides - 3.7_en

Page 62 of 115

3.5. Tasking VX IDE
The target preference page is automatically filled in according to the tool chain selected by the user. The
type of debugger you can choose depends on your toolchain analysis settings.

To build an Tasking VX IDE project, enter the required information in the Build tab of the target
preferences and click Done.
The contents to be filled out are as shown in the table below, which is mandatory.

• Build tab

ide_version Version of Tasking VX IDE

makefile_path Path of makefile created in Tasking VX IDE project

ide_directory_path
Path to the directory where Tasking VX IDE is installed ex. C:\Program
Files (x86)\TASKING\C166-VX v3.1r2

If you click the Done button on the target preference page without writing all the contents or if the path
has been changed, you can set it again at ‘Right click on the project in the test navigator-> Properties->
Test target-> Target environment’.

After setting the target environment and clicking the Run button in the unit test view, the controller tester
builds the target test code.

Suresofttech User Guides - 3.7_en

Page 63 of 115

3.6. Renesas CS+ IDE
The target preference page is automatically filled in according to the tool chain selected by the user. The
type of debugger you can choose depends on your toolchain analysis settings.

To build an Renesas CS+ IDE project, enter the required information in the Build tab of the target
preferences and click Done.
The contents to be filled out are as shown in the table below, which is mandatory.

• Build tab

ide_directory_path
Directory path of Renesas CS + IDE ex. C:\Program Files (x86)\Renesas
Electronics

ide_kind IDE kind(CS+)

workspace_path
This is only necessary for the Renesas HEW IDE, so you do not need to
enter it in CS +.

project_file_path Project file path created by Renesas CS+(.mtpj)

If you click the Done button on the target preference page without writing all the contents or if the path
has been changed, you can set it again at ‘Right click on the project in the test navigator-> Properties->
Test target-> Target environment’.

After setting the target environment and clicking the Run button in the unit test view, the controller tester
builds the target test code.

When exporting test codes from Controller Tester, some reference relative paths.
To reference this path when building in the Renesas CS+, add an environment variable.
- Add below paths at property of Build Tool-> Compile Options -> Preprocess ->
Additional include paths
(CTWORKSPACE) \.metadata\.plugins\com.codescroll.ut.embedded\ CT project name
\TestFixture
(CTWORKSPACE) \.metadata\.plugins\com.codescroll.ut.embedded\ CT project name
\TestFixture\cs

*

Suresofttech User Guides - 3.7_en

Page 64 of 115

Suresofttech User Guides - 3.7_en

Page 65 of 115

3.7. MPLAB X IDE
The target preference page is automatically filled in according to the tool chain selected by the user. The
type of debugger you can choose depends on your toolchain analysis settings.

To build an MPLAB X IDE project, enter the required information in the Build tab of the target
preferences and click Done.
The contents to be filled out are as shown in the table below, which is mandatory.

• Build tab

ide_directory_path
Installation path of MPLAB X IDE ex. C:\Program Files
(x86)\Microchip\MPLABX\v5.35

project_directory_path Project directory path created in MPLAB X IDE

If you click the Done button on the target preference page without writing all the contents or if the path
has been changed, you can set it again at ‘Right click on the project in the test navigator-> Properties->
Test target-> Target environment’.

After setting the target environment and clicking the Run button in the unit test view, the controller tester
builds the target test code.

Suresofttech User Guides - 3.7_en

Page 66 of 115

3.8. Microsoft Visual Studio
The target preference page is automatically filled in according to the tool chain selected by the user. The
type of debugger you can choose depends on your toolchain analysis settings.

To build an Microsoft Visual Studio project, enter the required information in the Build tab of the target
preferences and click Done.
The contents to be filled out are as shown in the table below, which is mandatory.

• Build tab

ide_directory_path
Installation path of Microsoft Visual Studio ex. C:\Program Files
(x86)\Microsoft Visual Studio 10.0

build_configuration Configuration and platform to test the target solution ex. Release Win32

sin_path File path of target solution (.sin file)

If you click the Done button on the target preference page without writing all the contents or if the path
has been changed, you can set it again at ‘Right click on the project in the test navigator-> Properties->
Test target-> Target environment’.

After setting the target environment and clicking the Run button in the unit test view, the controller tester
builds the target test code.

Suresofttech User Guides - 3.7_en

Page 67 of 115

3.9. GNU Compiler
The target preference page is automatically filled in according to the tool chain selected by the user. The
type of debugger you can choose depends on your toolchain analysis settings.

To build an GNU Compiler code, enter the required information in the Build tab of the target preferences
and click Done.
The contents to be filled out are as shown in the table below, which is mandatory.

• Build tab

makefile_path Path of user-made makefile

If you click the Done button on the target preference page without writing all the contents or if the path
has been changed, you can set it again at ‘Right click on the project in the test navigator-> Properties->
Test target-> Target environment’.

After setting the target environment and clicking the Run button in the unit test view, the controller tester
builds the target test code.

Suresofttech User Guides - 3.7_en

Page 68 of 115

4. Sharing Projects with Other Users
You can share the CodeScroll Controller Tester projects with others.
Controller Tester 3.3 or later uses [Export Project] and [Import Project] functions.

• Guide to Share Projects
• Guide to Share RTV Projects

Suresofttech User Guides - 3.7_en

Page 69 of 115

4.1. (Ver.3.3 or later) Guide to Share Projects
From Controller Tester 3.3, you can easily share a project with the [Export Project] and [Import Project]
functions.

• Export project
• Import project

Suresofttech User Guides - 3.7_en

Page 70 of 115

4.1.1. Export project
You can export projects, including project setup and testing.

1. On the main menu, click [File] > [Export]. The Export Wizard opens.

2. Click [General] > [Export Project].

3. After selecting the project to export and the path to export, click the [Finish] button.

Suresofttech User Guides - 3.7_en

Page 71 of 115

• (Ver.3.7 or later) When you export a project, you can export it including the toolchain and
source files.

4. You can see that there is a folder containing the exported project name in the exported path.
Compress the folder and move it to the computer of the user you want to share.

Suresofttech User Guides - 3.7_en

Page 72 of 115

4.1.2. Import project
Using the Import Project function, you can import a project exported from another PC into the
workspace.

Import general C/C++ Project
1. Click [File] > [Import] in the main menu. The Import Wizard opens.

2. Click [General] > [Import Project] and then click the [Next] button.
3. Click the [Browse] button to find the directory corresponding to the exported project.
4. When you select a directory, the toolchain is automatically selected from the project information to

be imported. If a project with the same name already exists in the workspace, you need to modify
the project name.

Suresofttech User Guides - 3.7_en

Page 73 of 115

• (After Ver.3.7) If the directory contains a toolchain or source codes, its options are checked
automatically.

5. Click the [Next] button.
6. You can check the source path included in the project to be imported. Invalid paths are marked in

red and can be modified by clicking on the path window.

If there is no toolchain with the same name as the toolchain of the project to be
imported, you must first export and then import the toolchain of the project to be
imported. For details, see [Import Toolchain] and [Export Toolchain] in the CodeScroll
Controller Tester document.

*

Suresofttech User Guides - 3.7_en

Page 74 of 115

7. If there is an invalid path, modifying one file path automatically modifies the associated file path.
At this time, you can check the number of modified routes at the top.

If is not in absolute path Windows format, the path is not checked for validity.*

Suresofttech User Guides - 3.7_en

Page 75 of 115

8. Click the [Finish] button.

Import RTV projects
RTV C/C++ projects can be imported in the same way as regular C/C++ project imports.

1. Click [File] -> [Import] in the main menu. In the Import Wizard, select [General] -> [Import Project]
and click [Next].

2. Click the [Browse] button to select the directory of the project to be imported. When you select a
directory, the toolchain is automatically selected from the project information to be imported. Click
the [Next] button.

3. You can check the source path included in the project to be imported. Invalid paths are marked in
red and can be modified by clicking on the path list.

4. Click the [Finish] button.

Import target project
When importing a target C/C++ project, additional target preferences must be created.

1. Click [File] -> [Import] in the main menu. In the Import Wizard, select [General] -> [Import Project]
and click [Next].

2. Click the [Browse] button to select the directory of the project to be imported. When you select a
directory, the toolchain is automatically selected from the project information to be imported. Click
the [Next] button.

3. In the case of a target project, the [Target Environment setting] window appears. The target
environment setting is loaded from the project information to be imported. Items with invalid paths
are displayed in red.

If there is no RTV server and toolchain information identical to the project to be imported,
RTV server and toolchain information is automatically generated from the project to be
imported.
*

Suresofttech User Guides - 3.7_en

Page 76 of 115

4. Complete the target environment settings and click the [Next] button.
5. You can check the source path included in the project to be imported. Invalid paths are marked in

red and can be modified by clicking on the path list.
6. Click the [Finish] button.

Even if it is not a target C/C++ project, if it is a project that includes target environment
settings, the target environment setting window appears when [Import Project] is
executed.
*

Even if it contains an invalid path, you can complete the target environment setup and
proceed to the next one, but the one-click target test may not be executed.

!

Suresofttech User Guides - 3.7_en

Page 77 of 115

4.2. (Ver.3.2 or earlier) Guide to Share RTV
Projects
RTV projects can be easily shared because the toolchain and source file information can be fetched from
the RTV server.
The step-by-step scenario according to the usage environment is as follows, and the RTV project can be
shared when the scenario is followed.

• Project sharing scenario
• RTV server user guide

Suresofttech User Guides - 3.7_en

Page 78 of 115

4.2.1. Project sharing scenario

When using the [Existing Projects into Workspace]
function

1. When you create a RTV project, a RTV project directory (hereinafter referred to as RTV_A project)
is created under the Controller Tester workspace.

2. The user who wants to share the project receives the RTV_A project directory created in the
above step, and copies and pastes the RTV_A project directory into the Controller Tester
workspace path that he uses.

3. Select top-level path to the project directory to import the projects using [Import] > [General] >
[Existing Projects into Workspace] function.

4. Information required for the project is received from the RTV server, and [the toolchain or resource
setting of the project is incorrect. If you want to reset automatically?], Click ‘Yes’ to complete the
RTV setup (RTV server and toolchain registration used when creating the project).

5. You can see that an RTV project (hereinafter RTV_A’ project) with the same name as RTV_A has
been created in the Controller Tester test navigator view.

6. Right-click the RTV_A’ project in [Test Navigator View] and perform [Reanalysis].
7. This should be done when connected to the same RTV server.

Suresofttech User Guides - 3.7_en

Page 79 of 115

When using the [C/C++ Project from RTV Build] function
1. When you create an RTV project, an RTV project directory (hereinafter RTV_A project) is created

under the Controller Tester workspace.
2. The user who wants to share the project connects to the same RTV server where the above

project was created from Controller Tester that he uses, and registers the same RTV toolchain.
3. In the project creation wizard, select [C/C++ Project from RTV Build] to create an RTV project

(hereinafter RTV_A’ project).
4. Import the $(project folder)/.csdata/link.mk file from the RTV_A project folder in the Controller

Tester workspace and overwrite the link.mk file in the RTV_A’ project folder.
5. If you want to share the same test data, check the below.

If the path where the source files are located is long, the entire source file may not be
imported properly. If the path where the source files are located is too long, make sure to
specify the CT’s global path just below the drive. (ex. C:\temp)
To modify the CT global path, open the CodeScroll.ini file in the location where the CT
package is installed and replace the default under the -g option with the new global path
to set.

*

Even if you share the same project, coverage results may differ if you create each unit
test. When you share a test, you must export the test using the [Export] > [Export Test]
feature, and then import the test you exported using the [Import] > [Import Test] feature.
*

Suresofttech User Guides - 3.7_en

Page 80 of 115

Suresofttech User Guides - 3.7_en

Page 81 of 115

4.2.2. RTV server user guide

When using one RTV server
1. When RTV server has a project built using the csbuild capture function

a. Projects can be imported according to the project sharing scenario above, without the need
for additional settings.

2. When the RTV server is connected, but the server (IP/Port) information is different
a. Since server (IP/Port) information at the time of project creation is imported, existing server

information is imported and toolchain information is not imported.
b. After modifying the server information to access the existing server, import the toolchain

with the same name by importing the toolchain. At this time, the path of the tool chain used
in the project should be the same.

Sharing of RTV projects can be difficult if you are using more than one RTV server
(same source file, tool chain, or if you want to receive and use a virtual machine file with
RTV server installed).

!

Suresofttech User Guides - 3.7_en

Page 82 of 115

5. Identifying the Cause of a Test Error
Occasional errors occur when performing tests on CodeScroll Controller Tester. At this time, the user
can find out the cause of the test error by checking the debug information of Controller Tester.

If test execution fails

Debug information verification can be performed even if the test fails. When you execute the [Inspect
Debug Info] of the generated test case, the stack trace is displayed in the [Inspect Debug Info], and you
can know where the test failed.

If the result contains errors after running the test
In some cases, after performing a test in Controller Tester, error results such as Signaled and Abnormal
Exit are displayed. When you execute the [Inspect Debug Info] of the failed test case, the function call
stack trace is displayed in the [Debug Information View]. If you added a variable/expression to debug, a
list of executed variables/expressions is also displayed.

The Stack trace indicates the order of the function calls. The location where the function was called is
recorded, and the last execution location is recorded at the top of the Stack trace.
The List of variable/expression represents the variable/expression values executed with the test case.

Suresofttech User Guides - 3.7_en

Page 83 of 115

The list of variables/expressions added to the entire source code can be checked in [List of Variable/
Expressiont] in the toolbar menu of [Debug Information View].

You can also check the variable/expression information to debug in the marker in the source code editor.
When you add a variable/expression to debug, the additional position is expressed as a marker in the
source code editor, and when you mouse over each marker, you can see the list of variables/
expressions added at that position.
If you select a test case that contains debug information, each marker displays the result of the variable/
expression executed by the test case.

The stack trace and the executed variable/expression value can be used to identify the cause of the
error in the test case that executed [Inspect Debug Info].

For more information on adding variables/expressions to debug, see [Add Variables/
Expressions to Debug] in the CodeScroll Controller Tester document.*

Suresofttech User Guides - 3.7_en

Page 84 of 115

6. Source Code Modification and Test
Reconfiguration
After designing tests source code can be modified. CodeScroll Controller Tester offers [Test
reconfiguration] feature to detect source code modifications and help reconfiguring tests affected by the
modification.

Controller Tester divide source code modifications into four cases.

• Modifying names of test or stub functions.
• Modifying names or type of global variables used in tests.
• Modifying names or the numbers of return type or parameter of test functions.
• Modifying the code of the target function to be injected with the fault.

In cases of detectable modification by Controller Tester, refer to In Cases of Detected Modification by
Controller Tester and in cases of undetectable modification by Controller Tester, refer to In Cases of
Undetected Modification by Controller Tester.

Reflect modified source codes using [Refresh RTV Source File] feature before using
[Test reconfiguration] in case of RTV projects and RTV target projects.*

Suresofttech User Guides - 3.7_en

Page 85 of 115

6.1. Run [Test Reconfiguration]

How to automatically use [Test Reconfiguration] feature
Controller Tester automatically detects following modifications.

• When differ present project information from imported project information using [Import Project]
feature.

• When differ present project information from imported test information using [Import test] feature.
• When detect source code modification after analyzing project.
• When analyze the project after writing the fault injection code in a location where fault injection is

not possible.

When differ present project information from imported project information
using [Import Project] feature

Suresofttech User Guides - 3.7_en

Page 86 of 115

When differ present project information from imported test information using
[Import test] feature

When detect source code modification after analyzing project

You can use [Test Reconfiguration] feature when Controller Tester detects source code modification
after project analysis or reanalysis.

1. When the source codes modify, the Test Navigator View indicates whether the change was made.

2. Select [Reanalyze] in project context menu or run tests to analyze the source codes.

Suresofttech User Guides - 3.7_en

Page 87 of 115

3. Click [Yes] button in [Test Reconfiguration] dialog, then a dialog for recofiguration appears.

When analyze the project after writing the fault injection code in a location
where fault injection is not possible

When reanalyzing the project, if there is fault injection information that satisfies the condition below, the
Reconfiguring Fault Injection dialog appears.

• When activate a line in a location where the fault cannot be injected and write fault injection code.

In the Reconfiguring Fault Injection dialog, you can see where faults cannot be injected and fault
injection information.

Suresofttech User Guides - 3.7_en

Page 88 of 115

The Reconfiguring Fault Injection dialog allows you to reuse fault injection information previously written.

How to manually use [Test Reconfiguration] feature
If you click [No] button in [Test Reconfiguration] dialog or [Cancel] button while reconfiguration, following
three method allow to use [Test Reconfiguration] feature.

• Select [Integrity Check] in pull-down menu of the Unit Test View.

• Select [Test reconfiguration] to use [Test Reconfiguration] feature in function context menu or test
context menu of the Unit Test View.

Suresofttech User Guides - 3.7_en

Page 89 of 115

• You can run Reconfiguring Fault Injection from the context menu or from the pull-down menu in
the Fault Injection View.

◦ Use the Reconfiguring Fault Injection feature in the menu at the top right of the Fault
Injection View.

◦ The Fault Injection View marks fault injection functions that need reconfiguring with a
reconfiguration-required status marker . Reconfiguring Fault Injection can be executed by
double-clicking or right-clicking on the fault injection function that needs to be reconfigured.

You can design a new test based on original test using [Test reconfiguration] feature.*

Suresofttech User Guides - 3.7_en

Page 90 of 115

The fault injection information cannot be modified where the fault injection function with
reconfiguration-required status marker.

!

Suresofttech User Guides - 3.7_en

Page 91 of 115

6.2. In Cases of Detected Modification
Automatically
When re-analyze or run the tests after modifying source codes, Controller Tester detects modifications
with integrity checker. Controller Tester divide source code modification with four cases.

• Modifying names of test or stub functions.
• Modifying names or type of global variables used in tests.
• Modifying name or number of return type or parameter of test functions.
• Modifying the code of the target function to be injected with the fault.

Modifying names of test or stub functions

When modifying names of test or stub functions, the Function Reconfiguration dialog shows up.

1. Left area is a list of function that modification detected. Functions that finish reconfiguration are
marked with .

2. Left area is a list of function contained in present source code.
• It’s sorted by similarity of function name.
• Function with high similarity is connected automatically.

3. It allow to search a function name. (*: any string, ?: any letter)
4. It show or hide functions with tests.

Modifying names or type of global variables used in tests

When modifying names or type of global variables used in tests, the Global Variable Reconfiguration

Suresofttech User Guides - 3.7_en

Page 92 of 115

dialog shows up.

1. Left area is a list of global variables that cannot find.
• Uncheck check boxes when variables are deleted.

2. Right area contain text boxes for entering present global variable.
• When user modify a global variable name, it shows global variable list in order of similarity.

3. When user enter a valid variable, red mark in the text box disappear.

• If many global variables with similar names, such as member variables of a structure, have been
changed, you can use the [Change all variables with the same name] feature to modify the global
variable names at the same time. If the [Change all variables with the same name] checkbox is
checked and the name of a global variable is modified, the name of a global variable with a similar
name is modified at the same time. If you uncheck the checkbox, you can edit the names of global
variables individually.

Modifying name or number of return type or parameter of test functions

When modifying name or number of return type or parameter of test functions, the Test Reconfiguration

Suresofttech User Guides - 3.7_en

Page 93 of 115

dialog shows up.

1. A list of modified functions.
2. Test information about function before modifying.

• If a variable connect to test information after modifying, it’s displayed in green and if not, it’s
displayed in red.

3. Test information about function after modifying.
• When select a variable of function before modifying, it shows connected variable with

selected variable.
• When drag a variable of function before modifying and drop to a variable of function after

modifying, test data are copied.

Modifying the code of the target function to be injected with the fault

If the code of the fault injection function has changed, the Reconfiguring Fault Injection dialog appears.

Suresofttech User Guides - 3.7_en

Page 94 of 115

The list of fault injection functions is displayed in area 1, pre-change fault injection information is
displayed in area 2, and after-change fault injection information is displayed in area 3.

• The list of fault injection functions
◦ If the checkbox is unchecked, the previous fault injection information is retained without

saving changes.
• The Fault Injection Information window

◦ Pre-change fault injection information can only be copied. You can copy by shortcut(Ctrl +
C) or right-click.

◦ After-change, the fault injection information can be modified. You can copy/paste by shortcut
(Ctrl + C / V) or right-click.

◦ Changed lines are marked with a line number in red.
◦ Double-clicking on a line selects the same line as the one selected in the other Fault

Injection Information window.
◦ The code written on the selected line can be shown in the Fault Injection Code window at

the bottom.
• The Fault Injection code window

◦ The code written before and after the selected line is displayed.
◦ Locations where fault injection is not allowed are disabled so that you cannot write code.

If there are no tests generated in the project, or if the fault injection line is enabled but no
code is written, the Reconfiguring Fault Injection dialog does not appear.*

Suresofttech User Guides - 3.7_en

Page 95 of 115

6.3. In Cases of Undetected Modification
Automatically
Controller Tester cannot detect following types of modification with integrity check.

• Modify value type of global variable that the type is not defined with typedef.
• Test build error (when implicit type conversion is unable)
• Test run error (runtime error including memory overflow, etc)
• Modify symbols excluding global variables.

◦ Modify lower type of parameters, symbol added with macro by user, static variable, etc.
• Side effect by modifying function position

◦ error that test cannot access to global variable
• Modify build stubs.

When modify value type of global variable, symbols excluding global variables, and function position,
user reconfigures test using [Test reconfiguration] feature. When modify build stubs, user delete build
stubs because build stubs are not target of integrity check.

Suresofttech User Guides - 3.7_en

Page 96 of 115

7. Navigate Source Codes
Controller Tester provides shortcuts and context menu in Source Code Editor for user convenience.

Shortcuts

Item Shortcut Description

Open Include
Browser

Ctrl + Alt + I Display the include relationship of the selected file in the
[Include Browser View].

Show outline Ctrl + O Show outline of selected file in outline popup.

Toggle Source/
Header

Ctrl + Tab Toggle source file and header file.

Open type in
Hierarchy

Ctrl + Alt + H Display hierarchy of the selected item in [Call Hierarchy
View]. (Funtion/Global Variable)

Toggle Mark
Occurrences

Alt + Shift + O Turns the mark occurrence on/off for the item that is
positioned by cursor or is specified by block.

Open
Declaration

F3, Ctrl + Click Move to the declaration of the selected item or open the file
if it is an include file.

Open Resource Ctrl + Shift + R Open a file by searching by name.

References Ctrl + Shift + G Display reference to selected item in Search View.

Forward/
Backward
history

Alt + Right / Left Move editor history forward/backward.

Find Next/
Previous

Ctrl + K / Ctrl + Shift
+ K Search the selected text forward/backward in the current file.

Toggle Folding Ctrl + Numpad_Divide Show/Hide folding icon.

Zoom Out/In
Ctrl + - / Ctrl + Shift
+ = Zoom out/in source code editer.

Expand/
Collaspe

Ctrl + Numpad_Add / Nu
mpad_Subtract Expand/collapse the item on the cursor.

Move Line
Down/UP

Alt + ↓ / ↑ Move line down/up.

Copy/Duplicate
Lines

Ctrl + Alt + ↓ / ↑ Copy lines down/up.

Suresofttech User Guides - 3.7_en

Page 97 of 115

Context menu

Item Description

Outline [Display the outline of the current file in [Outline View].

System Explorer Open the current file location in Windows Explorer.

Item Description

Search
Text

Search the selected character string in the target (workspace/project/file) and display it in
[Search View].

Suresofttech User Guides - 3.7_en

Page 98 of 115

8. Guides for C++ Test Using the Class
Factory View

Purpose of using class factories
When testing C++ source code, it is difficult to test because abstract classes cannot create objects.
Class factories can facilitate testing of abstract classes and reduce the iterations that occur when
designing class objects.

The main features of class factories
• Automatically create concrete classes that inherits from an abstract class
• Minimize repetitive tasks by applying them to tests all together

Utilizing class factories
This document explains the basic concepts for testing C++ before using class factories. After that, it
explains how to utilize class factories.

• Basic Concept for C++ Test
• Using the Object Creation Code of Abstract Class for Testing
• Design C++ Tests Using Class Factory
• Using Mock Objects in C++ Test

Suresofttech User Guides - 3.7_en

Page 99 of 115

8.1. Basic Concept for C++ Test
It outlines the basic concepts needed before testing C++ using the Class Factory View.

Pure virtual functions and abstract classes
Pure virtual functions

• Virtual function with declaration but no definition .
• Displayed as = 0.
• Virtual function implemented in derived class .

Abstract classes

• Classes that have pure virtual functions as members.
• Abstract classes cannot create objects.

◦ Declare a variable as a pointer or reference type.
▪ ex. AbstractClass * class1;.

• Support for polymorphism in object-oriented programming.
• Classes that inherit from an abstract class must override pure virtual functions.

◦ If a derived class that inherits from an abstract class does not override a pure virtual
function, the derived class is also an abstract class.

class Abstract {
virtual void f() = 0; // pure virtual

}; // "Abstract" is abstract

class Concrete : Abstract {
void f() override {} // non-pure virtual
virtual void g(); // non-pure virtual

}; // "Concrete" is non-abstract

class Abstract2 : Concrete {
void g() override = 0; // pure virtual overrider

}; // "Abstract2" is abstract

int main()
{

// Abstract a; // Error: abstract class
Concrete b; // OK
Abstract& a = b; // OK to reference abstract base
a.f(); // virtual dispatch to Concrete::f()
// Abstract2 a2; // Error: abstract class (final overrider of g() is p

ure)
}

Suresofttech User Guides - 3.7_en

Page 100 of 115

8.2. Using the Object Creation Code of
Abstract Class for Testing
When analyzing the source code, the object creation code of the concrete class that inherits the abstract
class is automatically generated in the class factory so that the object of the abstract class can be
created. In the object creation code of the abstract class, a framework for the concrete class is provided
so that the user can easily create the concrete class.

When creating a test, if a concrete class that inherits that abstract class exists in the source code, that
class is linked with the test, and if the concrete class does not exist, the object creation code in the class
factory is linked.

You can apply different types of abstract classes to your tests by adding object creation code.

Suresofttech User Guides - 3.7_en

Page 101 of 115

8.3. Design C++ Tests Using Class Factory
After Controller Tester 3.5, you can use class factories for most classes, not just abstract classes.

Advantages of Controller Tester 3.5 Class Factory

Class factories can be used to reduce simple repetitive tasks.

• Class objects that get external data
◦ Database, external input/output, server, and so on.

• In the case of class objects that need to be designed in a complex way in the Test Editor, but the
same should be used for multiple tests.

How to create and apply an object using a class factory

1. Right-click the class in the Class Factory View and use [Create] to create the class object creation
code.

2. Modify the class object creation code according to the test design.
3. Apply the class object creation code to the tests.

• Apply all together
• Apply individually

Suresofttech User Guides - 3.7_en

Page 102 of 115

8.4. Using Mock Objects in C++ Test

Purpose of using mock objects
When testing C++ source code, it is sometimes difficult to test because it costs much to create the actual
object or the test depends on the object a lot. In such cases, using a mock object that mimics the real
object can effectively reduce dependencies on the object. Additionally, you can generate specifications,
such as the expected number of calls of the mock to verify that the object is being used as intended.

Available toolchians
• GCC 6.0 or later
• Visual Studio 2015 and later

The main features of a mock object
• Setting return parameters and return values of a mock object
• Setting call count for mock object
• Checking whether the calls occured in a specific order
• Adding constraints to parameters
• etc

Mock object usage
This article explains how to use mock objects in C++ tests.

• Creating mock objects
• Generate specifications about mock objects

Suresofttech User Guides - 3.7_en

Page 103 of 115

8.4.1. Creating mock objects

Creating mock objects
1. Open [Test Editor], by double-clicking the test for which to create a mock object.
2. In the [Test Info tab], expand the test structure tree and select the object to create a mock.
3. Select [Use mock] at the constructor in the test information edit area on the right.

Suresofttech User Guides - 3.7_en

Page 104 of 115

8.4.2. Generate specifications about mock
objects

Generate specifications about mock objects automatically.
1. In the Test Information tab, click the mock object that you created.
2. In the Test Info Edit area on the right, Click [Generate Sepcification Wizard…] button.

• If specification about the mock object is empty, [Generation mock specification] wizard
automatically appears when you click the mock object.

3. In [Generation mock specification] wizard, select the target function to specify and click [OK]
button.

4. Edit parameters, return values, and repetitions.

• Click [Edit parameters] button to create a specification of the parameters used by the
function.

Suresofttech User Guides - 3.7_en

Page 105 of 115

◦ Selecting [any value] does not restrict the value of that parameter.
◦ You can restrict parameter values through [< User input… >]. For example, when you

type 1 in the input value and run tests, the test fails if the parameter is not 1.
• Click [Edit return value] button to determine the return value of the function.

◦ Select [Add] button to add the value to return when the function is called.
◦ Select [Remove] button to remove the last added return value.
◦ If you specify one return value, it will be returned repeatedly.
◦ When multiple return values are specify, the function returns them in order when

called. In this case, the test fails if the function is not called by the corresponding
number of return values.

• Click [Edit repetitions] button to create a specification of the number of calls to that function.

Suresofttech User Guides - 3.7_en

Page 106 of 115

◦ If you select [No number of repetitions specified], you do not restrict the number of
calls.

◦ Use [< User input… >] to limit the number of function calls. For example, if you set the
number of function calls to 3 and run a test, the test fails if the function is not called 3
times.

◦ [No function call] is the same as specifying a zero number of calls. In this case, the
test fails when the function is called.

5. Click [OK] button to generate a specification.

Generate specifications about the mock object yourself
You can modify the specifications created by [Generate Sepcification Wizard…] on Controller Tester or
create various specifications yourself. See this document for more information.

To set the return value and the repetitions at the same time, you must write it directly in
the Test Editor, referring to the specification you created in [Generation mock
specification] wizard.

!

Suresofttech User Guides - 3.7_en

Page 107 of 115

https://google.github.io/googletest/reference/mocking.html#EXPECT_CALL

9. Virtual Address Usage Guide
You can set the memory for testing the embedded environment by setting the virtual memory address.

1. Top menu [Window] > [Preferences] > [Unit Test] > [Virtual Address] > [Add…] Selection

2. After entering the name and range of the virtual address, click the [Add(A)] button

Suresofttech User Guides - 3.7_en

Page 108 of 115

3. Right-click the project [Properties] > [Unit Test] > [Virtual Address] and select the registered virtual
address range in the [Configuration Name] combo box

Suresofttech User Guides - 3.7_en

Page 109 of 115

4. Using a macro to set a value to a virtual address in [Before call code] of the test structure editor

5. Edit test case values

For details about macro, please refer to the Test Maco page in User Manual*

Suresofttech User Guides - 3.7_en

Page 110 of 115

https://www.manula.com/manuals/codescroll/controller-tester/3.7/en/topic/test-editor-macro

Suresofttech User Guides - 3.7_en

Page 111 of 115

10. Guides to Import Coverages
When importing coverages from Controller Tester in another environment or COVER, these are imported
by the following three criteria. If the criteria are not met, coverage imports may fail.

• version of coverage shared file
• ternary operation option
• coverage type

Suresofttech User Guides - 3.7_en

Page 112 of 115

10.1. Import Coverages by Version
When Controller Tester import coverages, it checks the version of the coverage shared file.

• When importing the higher-versioned coverage shared file, the coverage cannot be imported.

• When importing the lower-versioned coverage shared file, importing the coverages for some
functions may fail depending on the option of the tool that exported coverages.

Suresofttech User Guides - 3.7_en

Page 113 of 115

10.2. Import Coverages by Conditional
Operation Option
When the conditional operation option of Controller Tester differs from the tool that exported the
coverage shared files, the coverages cannot be imported.

Click the link in the warning window or [Preferences] > [Test] > [Coverage] > Branch coverage, MC/DC
measurement operator]. Then, change the [Conditional Operator(?:)] option to match the file you want to
import.

• When [Toolchains] > [Standard] in COVER is [COVER] > [Branch], turn off the [Conditional
Operator(?:)] option.

• When [Toolchains] > [Standard] in COVER is [COVER] > [MC/DC], turn on the [Conditional
Operator(?:)] option.

When changing the option, run the tests again after [Reanalyze].!

Suresofttech User Guides - 3.7_en

Page 114 of 115

10.3. Import Coverages by Coverage Type
After Controller Tester 3.6, users can import coverages when coverage types are different.

When selecting [Yes], statement/branch coverages are imported except MC/DC. When selecting [No],
coverages are not imported.

Suresofttech User Guides - 3.7_en

Page 115 of 115

	Table of Contents
	1. Target Test Guides
	1.1. Texas Instruments Code Composer Studio
	1.2. STM32cubeIDE
	Target test application and execution order

	2. Debugger User Guides
	2.1. Lauterbach TRACE32
	2.1.1. Supported target list that can generate cmm script automatically
	2.1.2. Step1: Setting target environment in Controller Tester
	2.1.3. Step2: Run the target test
	2.1.4. Debug the target test
	2.2. PLS Universal Debug Engine (UDE)
	2.2.1. Step1: Create a workspace in UDE IDE
	2.2.2. Step2: Setting target environment in Controller Tester
	2.2.3. Step3: Run the target test
	2.2.4. Debug the target test
	2.3. iSYSTEM winIDEA Debugger
	2.3.1. Preparation for use of iSYSTEM winIDEA
	2.3.2. Step1: Creating and setting up a winIDEA workspace
	2.3.3. Step2: Setting target environment in Controller Tester
	2.3.4. Step3: Run the target test
	2.3.5. Debug the target test
	2.4. IAR Embedded Workbench C-SPY Debugger
	2.4.1. Step1: Creating an IAR embedded workbench project
	2.4.2. Step2: Setting an IAR project
	2.4.3. Step3: Setting target environment in Controller Tester
	2.4.4. Step4: Run the target test
	2.4.5. Debug the target test
	2.5. Texas Instruments Code Composer Studio (CCS v4 and later)
	2.5.1. Step1: Create a project in Code Composer Studio
	2.5.2. Step2 : Setting target environment in Controller Tester
	2.5.3. Step3: Run the target test
	2.5.4. Debug the target test
	2.6. Microchip MPLAB IDE
	2.6.1. Step1: Debugger script settings
	2.6.2. Step2: Setting target environment in Controller Tester
	2.6.3. Step3: Run the target test
	3. Target Build Guide
	3.1. IAR Embedded Workbench IDE
	3.2. Texas Instruments Code Composer Studio
	3.3. CodeWarrior IDE
	3.4. Hightec Development Platform IDE
	3.5. Tasking VX IDE
	3.6. Renesas CS+ IDE
	3.7. MPLAB X IDE
	3.8. Microsoft Visual Studio
	3.9. GNU Compiler
	4. Sharing Projects with Other Users
	4.1. (Ver.3.3 or later) Guide to Share Projects
	4.1.1. Export project
	4.1.2. Import project
	Import general C/C++ Project
	Import RTV projects
	Import target project

	4.2. (Ver.3.2 or earlier) Guide to Share RTV Projects
	4.2.1. Project sharing scenario
	When using the [Existing Projects into Workspace] function
	When using the [C/C++ Project from RTV Build] function

	4.2.2. RTV server user guide
	When using one RTV server

	5. Identifying the Cause of a Test Error
	If test execution fails
	If the result contains errors after running the test

	6. Source Code Modification and Test Reconfiguration
	6.1. Run [Test Reconfiguration]
	How to automatically use [Test Reconfiguration] feature
	When differ present project information from imported project information using [Import Project] feature
	When differ present project information from imported test information using [Import test] feature
	When detect source code modification after analyzing project
	When analyze the project after writing the fault injection code in a location where fault injection is not possible

	How to manually use [Test Reconfiguration] feature

	6.2. In Cases of Detected Modification Automatically
	Modifying names of test or stub functions
	Modifying names or type of global variables used in tests
	Modifying name or number of return type or parameter of test functions
	Modifying the code of the target function to be injected with the fault

	6.3. In Cases of Undetected Modification Automatically
	7. Navigate Source Codes
	Shortcuts
	Context menu

	8. Guides for C++ Test Using the Class Factory View
	Purpose of using class factories
	The main features of class factories
	Utilizing class factories

	8.1. Basic Concept for C++ Test
	Pure virtual functions and abstract classes

	8.2. Using the Object Creation Code of Abstract Class for Testing
	8.3. Design C++ Tests Using Class Factory
	Advantages of Controller Tester 3.5 Class Factory
	How to create and apply an object using a class factory

	8.4. Using Mock Objects in C++ Test
	Purpose of using mock objects
	Available toolchians
	The main features of a mock object
	Mock object usage

	8.4.1. Creating mock objects
	Creating mock objects

	8.4.2. Generate specifications about mock objects
	Generate specifications about mock objects automatically.
	Generate specifications about the mock object yourself

	9. Virtual Address Usage Guide
	10. Guides to Import Coverages
	10.1. Import Coverages by Version
	10.2. Import Coverages by Conditional Operation Option
	10.3. Import Coverages by Coverage Type

