
Z Accelerators -
Developers Guide
8.2 — Last update: 2018/03/20

Basis Technologies

Copyright © 2018 Basis Technologies

Table of Contents
Audience ... 3

Introduction .. 4

Prerequisites .. 5

Basic Concepts .. 6
Architecture... 7
Diffuser ... 8
MiniCube... 9
Instance .. 10
Intervals .. 11
Capacity Groups ... 13

When to use Z Accelerators... 14

Main Program ... 15
General ... 16
Declaration.. 17
Selection Screen Definition ... 18
START-OF-SELECTION Event ... 19
Interval Processing Subroutine.. 20
Collating Interval Results .. 22
AT SELECTION-SCREEN OUTPUT ... 24

Transformation Program.. 25
Regular Transformation Program .. 26
Selection Screens and Transformation Programs.. 28

Setting up a Diffuser program ... 29
Program Definition .. 30
Default Technical Settings... 32
Interval Generation ... 34

Running Diffuser Programs ... 36
Technical Settings... 37
Developer Notes ... 41

Administering Diffuser Programs.. 43
Diffuser Mode ... 44

Results.. 45
Intervals .. 46
Variants .. 47
App Servers .. 48
Increase or Decrease Jobs ... 49
Decrease Jobs .. 50
Pause ... 51
Resume .. 53
Delete ... 54
Force Error.. 55
Reprocess Error .. 56
Rename Instance .. 59
Debug an Interval.. 61

Scheduling Diffuser Programs .. 63

Exception Handling and Application Logs.. 64

Email Notification ... 66

Debugging and Troubleshooting ... 68
Debugging Programs .. 69
Troubleshooting .. 70

Advanced Concepts ... 71
Dynamic Interval Generation ... 72
Authority Checks... 75

Authorisations.. 76
Implementation .. 79
Technical Settings ... 81
Diffuser Mode .. 85
Individual Actions... 87

Application Program Interface ... 89
Overview ... 90
Selecting Instances.. 91
Get Details... 93
Pause .. 94
Restart... 95
Change Jobs ... 96

Software Support.. 97
Online Forum .. 98

Support from Basis Technologies.. 99

Audience
This guide has been developed for the following audience:

• ABAP™ Developers intending to use Z Accelerators
• Performance Specialists or Advisers
• SAP® Architects

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 3 of 100

Introduction
Basis Technologies’ Diffuser provides a framework and run-time environment for custom developed SAP
reports that must work with large volumes of a program running this we call a Z Accelerator. It provides for
use of multiple processors with custom reports such that these programs can run within acceptable time
constraints to deliver timelier business information.

Z Accelerators can be easily developed using the standard SAP ABAP Workbench. The Z Accelerators
methodology guides the developer, by making them adhere to a structured program design and
standardized technical program structure that separates data processing logic from presentation logic. For
each Z Accelerator, there are three main components that need to be set up. This refers to the Diffuser
definition and also two programs in the ABAP repository for each Z Accelerator, these three components
are:

1. Main Program – This ABAP program retrieves data from the database, processes this information and
then stores the data

2. Transformation Program – This ABAP program retrieves the data that was processed in the main
program and presents this to the user

3. Diffuser Definition – This defines the name of the technical components of each Z Accelerator, as well
as a number of other settings relevant to using the Diffuser

This guide will take you firstly through the Basic concepts of using Z Accelerators and then get you started
on how to develop your own Z Accelerators. This will allow you to write ABAP reports that process large
volumes of data in your SAP system.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 4 of 100

Prerequisites
Systems (currently supported)

SAP® Web Application server release 7.00 (or higher)

Prerequisites for the SAP UI

Minimum:
SAP® GUI 7.10
Recommended:
Current Version SAP GUI

Older versions of SAP might be supported by older versions of Diffuser please contact us
for details*

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 5 of 100

Basic Concepts
The basic concepts of operating Diffuser are shown as below:

• Architecture
• Diffuser
• MiniCube
• Instance
• Intervals
• Capacity Groups

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 6 of 100

Architecture
For a program to be accelerated by the Diffuser, it can either be developed as a custom Z Accelerator or
provided as a prepackaged program supplied by Basis Technologies (as a GT, GTi or BDi App). The key
features to accelerate a program are the Diffuser and MiniCube.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 7 of 100

Diffuser
Diffuser takes a large data set and splits it up into small pieces of data called Intervals these can then be
processed with multiple processors running. The Diffuser allows the number of processors to be increased
or decreased at runtime, including pausing and restarting a run. A group of processors can be assigned to a
Capacity Group to allow processing power to be dynamically distributed across programs.

This can be utilised by custom programs as a Z Accelerator or by programs supplied prepackaged by Basis
Technologies (the GT, GTi and BDi Apps).

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 8 of 100

MiniCube
When a Diffuser run completes it can store the results as a MiniCube inside the architecture, these can be
retrieved and further selections applied to this data. The data can also be supplied in an interactive way so
that for example ALV or drilldown features can be used.

The transaction /BTR/MINICUBE also allows the monitoring of runs and with the Diffuser Mode the instance
resources can be increased at runtime, see Administering Diffuser Programs.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 9 of 100

Instance
Each run of a program using the Diffuser is called an ‘Instance’. This can be given a separate label and,
using the framework, a user can view a number of previous instances and pick which they wish to view the
details of. The framework allows the saving of data against the instance.

An instance can have the following states:

Technical Code Description

10 Created

20 Generating Intervals

25 Intervals Generated (Ready to Process)

30 In Process

40 Error

50 Stopped

55 Stopping

60 Ready to Collate

70 Collating

80 Finished

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 10 of 100

Intervals
Diffuser works on the principal that data processing can be divided into independent “pieces” of work. These
pieces of work are referred to as Intervals and usually represent a range of master or transactional data that
needs to be worked upon. This, for example, might be Intervals of Business Partner Numbers, Sales Order
Numbers, or Account Numbers. Diffuser ensures that these Intervals of data are processed using multiple
processors instead of the traditional sequential approach with one processor.
An interval can be thought of as a range of values that represent X number of master or transaction data
objects. It is based on some data domain having a data type and a length. An example interval might be “All
Sales Order’s from 1000 through to 2000”. It can then be implied that an interval has a Low value (e.g.
1000) and a High value (e.g. 2000).
If a SAP system has 100,000 Sales Orders, and an ABAP report is required to process all of them, then this
range of Sales Orders can be broken down into, for example, 100 intervals, each representing 1000 Sales
Orders. The list of 100 intervals might look something like:

The concept of an Interval Object is used to create these Intervals for use by a Diffuser program this is
where an object such as a Sales Orders are broken down before the Diffuser program is run. As part of the
definition of a Diffuser program, an Interval Object is selected. This refers directly to the type of Intervals the
program uses, for example, some Interval Objects that are provided with Diffuser are:

• Sales Order
• Business Partner
• Contract Account

The generation of Interval Objects is detailed in the Setting up a Diffuser program Interval Generation
section.

When using Z Accelerators intervals can also be built at runtime. This is programmed into the Diffuser
program and is useful where you have complex intervals or need to define the number of intervals down to a

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 11 of 100

smaller size; a subset of materials, for example. This concept is detailed in the Z Accelerators – Advanced
Concepts – Dynamic Interval Generation section.

An interval can have the following states:

Technical Code Description

01 Available

02 Selected

03 In Process

04 Error

05 Stopped

06 Completed

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 12 of 100

http://www.manula.com/manuals/basis-technologies/z-accelerators-developers-guide/1/en/topic/interval-generation

Capacity Groups
Capacity Groups is a powerful tool of the Diffuser created to enhance its system resource administration
capabilities. While the Diffuser provides a parallel processing platform and runtime environment which
makes the execution of ABAP code faster and more efficient, Capacity Groups offer an advanced
administration framework for the consumption of system resources by Diffuser enabled programs. The tool
determines how many background processes a Diffuser program can use on one or more selected servers,
on a specific time pattern, and its relative priority to other Diffuser programs running at that point.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 13 of 100

When to use Z Accelerators
Z Accelerators are essential when the data volumes are so large that the processing time to run your reports
is unacceptable. If you are able to write a report that runs within acceptable time-constraints then the use of
Z Accelerators may not be required. However, even if your report runs within 2 hours (and this is considered
acceptable) you are still able to use Z Accelerators to bring this run-time down even further.
It is our consideration that almost any report that executes in the background can gain from being run using
Z Accelerators. This is because the Z Accelerator format not only promotes performance improvements, but
also cost reductions in maintenance by having a generic format. It also provides the benefit of separating
the processing and presentation logic. Separate presentation logic allows the data to be viewed interactively
and in a user-friendly manner – far easier than lengthy static list output.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 14 of 100

Main Program
This section takes you through the steps to construct the main program that uses Z Accelerators.

• General
• Declaration
• Selection Screen Definition
• START-OF-SELECTION Event
• Interval Processing Subroutine
• Collating Interval Results
• AT SELECTION-SCREEN OUTPUT

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 15 of 100

General
The Main Program is a simple “Type 1” (Executable) ABAP program/report and can be created or changed
via the transaction /BTR/DIFFUSER, or the standard SAP transaction SE38. For ease we recommend the
transaction /BTR/DIFFUSER. Within the Main program, the basic structure of a custom ABAP report is:

• Declaration – Declaration of working variables, include files, type declarations and so forth
• Selection Screen – Parameter screen definition of select-options and parameters
• Start-Of-Selection Event – Program Initialization
• Interval Processing Subroutine – Initial Data Restriction logic and Processing logic
• Collating Interval Subroutine – Collation logic to combine interval results (This is optional)

Note that there is no mention of result presentation in the Main Program; this is implemented in the
Transformation program. This means that you should not do the following in the Main program:

• Use the WRITE statement for display to the SAP spool or screen (You can of course use the WRITE
statement to format data into variables)

• Use the AT USER-COMMAND or AT LINE-SELECTION processing blocks
• Declare headings or text elements that are to be used for presentation
• Perform any sort of presentation logic

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 16 of 100

Declaration
When you create the Main program, you must include /BTR/MDR_INCLUDE. This can be done at the start
of the Main program as in the below example:

* Sample Diffuser Program

REPORT Z_SAMPLE_PROGRAM.

INCLUDE:
/btr/mdr_include.

This is also where you should include other declarations such as other includes, type declarations, global
data declarations and table statements.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 17 of 100

Selection Screen Definition
Almost all custom ABAP reports enable the user (or background variant) to supply select-options to restrict
the data that is retrieved and processed. Standard ABAP reports allow the developer to use the keywords:

• SELECTION-SCREEN
• SELECT-OPTIONS
• PARAMETERS

In your Diffuser program, you must define the select-options and parameters of a program within the
following Diffuser statements:
mdr-begin-selection-screen and mdr-end-selection-screen

Everything else regarding syntax remains exactly the same. This allows the technical settings button to be
seen on screen.

An example declaration of parameters and select-options is as follows:

* PARAMETERS and SELECT-OPTIONS

mdr-begin-selection-screen.

SELECTION-SCREEN BEGIN OF BLOCK general WITH FRAME TITLE text-t01.
PARAMETERS:

p_bukrs TYPE vbak-bukrs OBLIGATORY, p_keydat TYPE d OBLIGATORY.

SELECT-OPTIONS:
s_belnr FOR vbak-belnr, s_crdat FOR vbak-erdat.

SELECTION-SCREEN END OF BLOCK general.

mdr-end-selection-screen.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 18 of 100

START-OF-SELECTION Event
The START-OF-SELECTION event must be defined in the DIffuser main report. However, unlike standard
ABAP reports this event does nothing except execute an Diffuser statement. This statement must
immediately follow the START-OF-SELECTION keyword and nothing else should follow it. In effect, this
single Diffuser statement begins processing the entire report. The following is a sample of how the START-
OF-SELECTION event should appear:

* START-OF-SELECTION event

START-OF-SELECTION.

mdr_program_initialize.

This statement will begin execution of the Diffuser program. Intervals will be generated (or retrieved) and
one or more jobs started. For each interval, the interval processing subroutine will be called (defined next).

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 19 of 100

Interval Processing Subroutine
The special subroutine mdr_interval_processing is called once for each interval to be processed. It is
passed a data dictionary structure of type /BTR/ST_INTERVAL_VALUES that has a number of fields
defined. The most important of these fields is “LOW” and “HIGH”. At the start of the interval processing, you
should typecast these two values to your own local variables.
The next step is to retrieve the data you require in your application specific program. However, you need to
ensure that your program only retrieves the data relevant for that particular interval. This means your
SELECT statements (if appropriate) must use the LOW and the HIGH values in the restriction of data
retrieved.
This differs only slightly from a standard ABAP report. Put simply, the selection of the master/transactional
data must be extended to include a further WHERE clause.
Once all data in the interval has been retrieved and processed appropriately, you need to save off the
results of the processing. This is done using the macro mdr_interval_result_put. It expects two parameters
(1) a label identifying the data and (2) the data to be saved. The data to be saved can take any form
whether it is a locally declared type or a data type defined in the data dictionary. The data can also be an
internal table or even a complex type containing both structures and internal tables.
An example Interval Processing subroutine is shown below:

--
* FORM mdr_interval_processing
--
* This form is called by the Diffuser to process each *
* interval range. Results for each interval should be calculated *
* within this subroutine and be saved for later collation *
--
FORM mdr_interval_processing

USING x_interval TYPE /btr/st_interval_values.

DATA:
lt_vbak LIKE vbak OCCURS 0 WITH HEADER LINE,
lv_belnr_low TYPE vbak-belnr,
lv_belnr_high TYPE vbak-belnr.

* Type cast the interval low and high values
lv_belnr_low = x_interval-low. lv_belnr_high = x_interval-high.

* Retrieve data
SELECT *

FROM vbak
INTO TABLE lt_vbak

WHERE belnr BETWEEN lv_belnr_low AND lv_belnr_high

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 20 of 100

AND bukrs = p_bukrs.

* Process data
PERFORM process_data TABLES lt_vbak.

* Save results of interval
mdr_interval_result_put 'RESULTS' gt_results.

ENDFORM.

Once the data has been retrieved, a subroutine is called to process the data. This subroutine uses the Sales
Order data and accumulates a global internal table called GT_RESULTS. It is not important what logic this
subroutine performs, or the structure of this data, but rather that once this internal table is built, it is then
saved using the statement mdr_interval_result_put.
Note that you can save multiple results for a particular interval. For example:

* Save results of interval
mdr_interval_result_put 'RESULTS' gt_results.
mdr_interval_result_put 'OTHERRESULTS' gt_other_results.

Note that the interval low and high range values have been typecast at the start of the
subroutine into the local variables. The data is then retrieved using the LOW and HIGH
values to restrict the list of Sales Orders returned. Furthermore, the parameters declared in
the Selection screen definition are also used to restrict the data that is retrieved.

*

The important point to note is that the label must be unique. Now that the results have been
determined and saved for the interval, the results of all intervals can be combined into a
single “final” result. This is the function of the Collation subroutine, which is described in the
following section.

*

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 21 of 100

Collating Interval Results
After all the intervals of the program run have been processed, Diffuser calls a special subroutine to collate
the interval results back together into a single result. Once collated, sets of results exist for the program run.
The logic required to collate the interval results is often quite simple but will vary depending upon the nature
of the report.
In order to develop your own collation routine, it is a simple matter of adding a new subroutine to the Main
program. This subroutine must be called mdr_interval_collation. It has a single parameter passed to it,
which is of type /BTR/TT_MDR_INTERVALS. This parameter contains the complete list of intervals and the
associated result(s) that have been calculated for each interval in the interval processing subroutine.
It is the task of the Collation routine to loop through each interval and retrieve the result for that interval. It
should then combine the data results of each interval together to form one large combined result. An
example collation routine is shown below:

* FORM mdr_interval_collation

* This form is called by once all intervals have been processed. *
* It can be used to collate the results of the intervals together. *

FORM mdr_interval_collation

USING xt_intervals TYPE /btr/tt_mdr_intervals.
DATA:
lv_interval LIKE LINE OF xt_intervals,
lt_summary LIKE gt_summary_list[],
lv_parameters TYPE ty_parameters.

REFRESH gt_summary_list.

LOOP AT xt_intervals INTO lv_interval.
* Get the summary results for this interval

mdr_interval_result_get lv_interval co_label_summary lt_summary[].

* Accumulate in the collated summary
LOOP AT lt_summary INTO gt_summary_list.

COLLECT gt_summary_list.
ENDLOOP.

ENDLOOP.

* Save the summary list for access by the transformation program.
mdr_instance_result_put co_label_summary gt_summary_list[].

ENDFORM.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 22 of 100

As can be seen in the example code the steps of the collation routine are to:

1. Loop through each interval passed into the subroutine
2. For each interval, retrieve the results that have been calculated by the interval processing routine by

using the statement mdr_interval_result_get
3. For each result of the interval, combine the data into a “complete” result
4. Store the “complete” result back into Diffuser using the statement mdr_instance_result_put

Let’s first look at the statement mdr_interval_result_get.

mdr_interval_result_get lv_interval co_label_summary lt_summary[].

The first parameter of this statement “lv_interval” is the interval detail that we are retrieving the data from;
this is simply the appropriate row of the parameter xt_intervals.

The second parameter of this statement “co_label_summary” is a character string that represents the label
of the data. This must be the label that was used to originally store the result during the interval processing.

The final parameter is the result variable itself “lt_summary[]”. This must have the same structure as was
originally stored when the result was “put” during the interval processing routine using the statement
mdr_interval_result_put. It is crucial that this data type is the same.

Once the Collation subroutine executes, the program will now have a single “complete” result (or results) for
the entire interval set. This complete result is a combination of the results of each interval of work as though
one job had executed the entire report.
With the processing component of your Diffuser program finished and the end result collated – the final step
is to present this data to the user.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 23 of 100

AT SELECTION-SCREEN OUTPUT
If you intend to use the AT SELECTION-SCREEN OUTPUT event in your Diffuser program, you will find that
Diffuser does not allow you to use this, this is due to some constraints in defining multiple AT
SELECTION-SCREEN OUTPUT events in a program (Diffuser also uses this for the technical settings tab of
your program). You can still implement this code by creating the subroutine
AT_SELECTION_SCREEN_OUTPUT in your Main Diffuser Program as below. There are no parameters
required to this form, and you can access the SCREEN structure as normal.

-------------- FORM at_selection_screen_output *-------------*
* This form allows custom AT SELECTION-SCREEN OUTPUT events to *
* be used *
--
FORM mdr_at_selection_screen_output.

* Here you can access the screen variable as if you were using
* the standard AT SELECTION-SCREEN OUTPUT event. All other
* report events can be defined as normal.

LOOP AT SCREEN.
CASE screen-name.

WHEN 'S_CARRID-LOW'.
WHEN 'S_CARRID-HIGH'.

ENDCASE.

MODIFY SCREEN.
ENDLOOP.

ENDFORM. "at_selection_screen_output

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 24 of 100

Transformation Program
• Regular Transformation Program
• Selection Screens and Transformation Programs

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 25 of 100

Regular Transformation Program
As mentioned earlier, Diffuser requires that the processing and presentation components of a report/
program are separate. This section describes how the Transformation (Presentation) program is to be
structured.
The Transformation program is its own stand-alone program with a different name to that of the Main
program. The common component of the Transformation and Main program should be the data type(s) of
the results. If you have defined your own data type to store the result sets, then either make sure they are
defined in the Data Dictionary, or they have been defined in a common include file for use by both the Main
and Transformation programs.
The Transformation program is designed to run every time that the user is to be presented with the end
result data. This means it needs to first retrieve the results and then present them to the user. One of the
major benefits of having the Transformation program separate to the Main program is that it can have its
own select-options/parameters. This can be used to further restrict the “collated” data when it is presented.
An example transformation program is shown below:

* Sample Transformation Program

REPORT z_sample_mdr_transform_program.

INCLUDE:
/btr/mdr_include.

* Transformation run options
mdr-begin-select_screen_trans.

START-OF-SELECTION.

* Get the summary results
mdr_instance_result_get co_label_summary gt_summary_list[].

* Display the details to the user
PERFORM display_result USING gt_summary_list.

The statement mdr-begin-select_screen_trans must be used before the START-OF-SELECTION event. This
allows the transformation program to be run separately from the run history and doing so will produce the
options below the main part of the selection screen allowing the user to check their latest runs or select
runs.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 26 of 100

The next statement in the transformation program is mdr_instance_result_get. This statement will retrieve
the “complete” result that was calculated in the Collation subroutine. The label that is passed is very
important in that it identifies which result you are trying to retrieve since there may be more than one. The
last parameter to the statement is the actual variable that you have defined and must be the exact type as
what you have defined in the Collation subroutine when you saved the “complete” result.
Now that the complete result (or results) has been retrieved, you can display them to the user. It is up to you
how you do this. In the example on the previous page, a subroutine has been defined that will perform
whatever steps are required to display the data. This might involve using WRITE statements and outputting
to the spool. In many cases, a better approach would be to use the ABAP List viewer and call the REUSE*
function modules. There are no restrictions to the presentation possibilities.
An important feature of the Transformation program is that it can be interactive. Hence the AT
USERCOMMAND and AT LINE-SELECTION events can be implemented, unlike a traditional batch report
that would have the results stored in the spool. The Transformation program will be executed every time a
user decides to view the results of a Diffuser program run.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 27 of 100

Selection Screens and Transformation
Programs
Transformation programs can also be enhanced with selection screens to enable the data retrieved from the
Diffuser framework to be filtered as per the example below filtering by company code. Or alternatively
selection screen options could impact the output or offer file download options in the usual way you might
control any ABAP program.

* Sample Transformation Program

REPORT z_sample_mdr_transform_program.

INCLUDE:
/btr/mdr_include.

SELECTION-SCREEN BEGIN OF BLOCK seloptions WITH FRME TITLE texts01.

SELECT-OPTIONS s_bukrs FOR vbak-bukrs.

SELECTION-SCREEN END OF BLOCK seloptions.

* Transformation run options
mdr-begin-select_screen_trans.

START-OF-SELECTION.

* Get the summary results
mdr_instance_result_get co_label_summary gt_summary_list[].

* Filter the summary results
delete gt_summary_list where bukrs not in s_bukrs.

* Display the details to the user
PERFORM display_result USING gt_summary_list.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 28 of 100

Setting up a Diffuser program
For a program to use Diffuser, it can either be developed as a custom Z Accelerator or provided as a
prepackaged program supplied by Basis Technologies (as a GT, GTi or BDi App).

To setup a program to use Diffuser use the transaction /BTR/DIFFUSER here as a minimum define the
Diffuser program in the Program Definition, then choose to setup the technical settings and generate
intervals where required.

• Program Definition
• Default Technical Settings
• Interval Generation

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 29 of 100

Program Definition
The definition of a Diffuser program is set up via the transaction /N/BTR/DIFFUSER.

Enter the program name and press the Create button for new programs or Change button for an existing
program with the sub-object as program definition.

The definition is now displayed as below.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 30 of 100

The main program is already populated from the first screen. A transformation program can now be
configured if required.

The “Interval Object” object is also populated here, refer here for more information on intervals.

The program definition also allows the user to configure which application log object and sub-object any
messages are written to that are called during the execution of the program. The default object and sub-
object are /BTR/MDR/ and DEFAULT respectively.

Furthermore, the transaction N/BTR/DIFFUSER allows the developer to maintain the Main Program and
Transformation Program directly instead of using the standard SAP transaction SE38, with the code buttons
at the bottom linking directly to the relevant subroutines.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 31 of 100

http://www.manula.com/manuals/basis-technologies/mass-data-runtime-developers-guide/1/en/topic/interval

Default Technical Settings
The second sub-object managed through the transaction /BTR/DIFFUSER is “Defaults for Technical
Settings”. This screen contains two main sections.

1. “Defaults for Technical Settings” allows to set default values for a specific Diffuser program. Once set,
these values will always appear on the Technical Settings’ sub screen for that program see Technical
Settings under Running Diffuser Programs for more details.

1. “Technical Settings Access” we will explore in more detail.

Background Program

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 32 of 100

NOTE: This functionality requires “Wait for run to complete” to be set.

This option supresses the default display of the Run History screen after completion of an instance run. This
is a useful feature that allows a Diffuser program to be called from another program without interrupting the
latter with the MiniCube display.

The input field “Check for completion (in sec)” allows to set in seconds a time interval in which the parent
job of a running Diffuser instance will wake up and check if all child parallel processes have completed. The
default wake up and check time is 30 seconds which is suitable for very long running programs but not for
speeding up web services where every second counts.

Lock Technical Settings

This options allows to lock all input fields for Technical Settings. This is useful if when a program can
repeatedly run with the same default values and users should not change those values. When this option is
set, the Diffuser Mode in the MiniCube will be locked as well.

This restriction applies at program level and not at user level. That is, once set the Technical Settings will be
locked for all users. Restrictions at user level can be implemented, see the section Authority Checks in the Z
Accelerators Guide.

Lock Expert Mode

This option is similar to “Lock Technical Settings”. The only difference is that on the Technical settings
screen only the input fields under “Distribution” are locked. This allows the user to change settings like label
name while protecting the more critical job distribution section from potential misuse. This option applies at
program level as well. Restrictions at user level can be implemented with see the section Authority Checks
in the Z Accelerators Guide.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 33 of 100

http://www.manula.com/manuals/basis-technologies/z-accelerators-developers-guide/1/en/topic/authority-checks
http://www.manula.com/manuals/basis-technologies/z-accelerators-developers-guide/1/en/topic/authority-checks

Interval Generation
When a Diffuser program uses Interval Objects, an Interval Variant needs to be created from the Interval
Object, before the Diffuser program is run. An Interval Variant can be thought of as the set of Intervals that
the Diffuser program is going to use. It is necessary that new Interval Variants are generated regularly
(potentially before each batch run) to ensure that the intervals are split evenly as the data in the system
grows.

To use an Interval Objects, they must first be configured into the framework via table /BTR/INTVALOBJ.

There are two different types of Interval Objects; standard SAP Mass Run Interval Objects and Diffuser
Interval Objects. They have similar operation except for the generation of the Interval Variants. The Intervals
(or Interval Variant) are created before the Diffuser program is executed; this is done via the program /BTR/
MDR_INTERVAL_GENERATION or alternately for standard SAP Interval variants via transaction FQD2.
Either an Interval Count or Interval Size can be used as parameters to how the Intervals get generated.

The above example shows the generation of a new Interval Variant called INT:CNT:10 from the Interval
Object “Customer Interval Object”, with the requirement that 10 Intervals are to be created.

As can be seen below, the result is 10 generated Intervals.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 34 of 100

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 35 of 100

Running Diffuser Programs
The following sections should be considered before running a Diffuser program

• Technical Settings
• Developer Notes

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 36 of 100

Technical Settings
The key part that the user sees is the “Technical Settings” button as below.

If you select the “Technical Settings” button, you will be prompted for Diffuser specific technical settings.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 37 of 100

These “Technical Settings” are important when executing an Diffuser program be it in a production
environment, or when performing unit testing of your Diffuser program.

Note that you can set up Default Technical Settings and set up user authorizations to control the users
ability to change these settings, for more information refer to the Z Accelerators – Developers Guide
Authority Checks.

An explanation for the function of each field on the “Technical Settings” screen is as below:

• Label – The first is a label that can be specified to identify this particular execution.

• Perform processing using intervals of – This is the interval object confirmed in the Program Definition

• Interval Variant – The Interval variant provides you with a list of different pre-generated Intervals. As
detailed in the section Interval Generation, the interval variants are pre-generated using program
/BTR/MDR_INTERVAL_GENERATION

• Number of batch jobs across all servers – This specifies the number of processes with which to run
the Diffuser program.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 38 of 100

http://www.manula.com/manuals/basis-technologies/z-accelerators-developers-guide/1/en/topic/authority-checks

• Distribution according to server grouping – This allows the distribution of jobs over one server group
to control the number of processors available to this Diffuser instance.

• Manual Distribution – The server grouping above can also be distributed manually.

• Run online as a single process (debugging mode) – This is only used when debugging Diffuser
programs and ensures the whole program runs sequentially, in a foreground process.

• Wait for run to complete before finishing – This is often used when running Diffuser programs on-line
or when executing them via a job scheduler. It will ensure the parent process waits until all child
processes have completed. Once all child processes have finished, control is returned to the parent
for completion.

• Launch Transformation Program after completed run – This means the MiniCube screen is skipped so
the user gets straight to their results when the run completes

• Distribution List – After a Diffuser program completes it is able to send a SAP office document or
external email to a set of recipients that can be specified here.

• Message log level – Lower limit for the priority of messages output to the application log. For
example, you can restrict output of informational application log messages by increasing the log level
via this parameter.

When using Dynamic Intervals as set out in the Z Accelerators – Developers Guide Dynamic Interval
Generation the “Interval Settings” section will change and be replaced with the two options Interval Count
and Interval Size introduced, this looks as per the screenshot below.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 39 of 100

http://www.manula.com/manuals/basis-technologies/z-accelerators-developers-guide/1/en/topic/interval-generation
http://www.manula.com/manuals/basis-technologies/z-accelerators-developers-guide/1/en/topic/interval-generation

The impact of the two fields is as below:

• Interval Count – This specifies the number of intervals (pieces) that the total amount of work to be
done is to be broken up into

• Interval Size – This specifies the “number of objects” to be put into each interval to be then worked
upon independently

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 40 of 100

Developer Notes
As a developer, your first step will be to ensure the program runs correctly with a single job, but with more
than one interval. You should have the first run option selected for this, with 1 job in the corresponding field.
When your interval processing, collation and presentation all work correctly with a single job (but more than
one interval) then most likely your program is ready for running in parallel mode on large volumes of data.
This can be done using the same run option but with a higher number of jobs specified.

When you execute your Diffuser program and you specify the first run option, the execution will be in the
background; DIffuser will immediately start the jobs and take you into the MiniCube Monitoring transaction.
Here you are able to refresh the display in order to determine the current status and progress of the
execution.
The setting “Wait for run to complete before finishing” ensures that the master job stays active until all N sub
jobs have completed. This may be useful if you require another process to begin when this one completes.
The “Distribution List” parameter is described in the following section Email Notification.
After the program has completed you will be able to view the results. You can access the run history via
transaction /BTR/MINICUBE, or via transaction /BTR/DIFFUSER and the “MiniCube” button. You then view
the results by selecting the Program run, and selecting the Transform button (or F5). This will display your
results as you have implemented in the Transformation program.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 41 of 100

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 42 of 100

Administering Diffuser Programs
The Diffuser provides the advanced user a number of powerful administrative capabilities via the MiniCube
transaction /N/BTR/MINICUBE (see screen below). These capabilities provide a powerful way of managing
your Diffuser programs.

• Diffuser Mode
• Intervals
• Results
• Variants
• App Servers
• Increase or Decrease Jobs
• Pause
• Resume
• Delete
• Force Error
• Reprocess Error
• Debug an Interval
• Rename Instance

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 43 of 100

Diffuser Mode
To access the expert mode click the Diffuser mode button as below.

If authorized a number of other functions will be revealed.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 44 of 100

Results
To access the raw results stored against the instance click the results button as below.

You can also select an interval and view the raw results stored against each interval, by double-clicking the
number of results.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 45 of 100

Intervals
By drilling down on the program name the user will access the programs instance runs. Select an instance
and in Diffuser mode double click the instance or click “Intervals” to display the intervals to that specific
instance run.

The details of all the intervals are then displayed as below.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 46 of 100

Variants
To access the details entered on the selection screen for an instance click the variant button as below.

This enables the variant details entered on the selection screen to be viewed.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 47 of 100

App Servers
To view the application servers click the App Server button as below.

This then displays the available App Servers

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 48 of 100

Increase or Decrease Jobs
Through the MiniCube transaction, you can see historical instances of a program as well as any currently
executing program instances. You can also see the number of active jobs for each program instance
currently running, and it is possible to change the number of jobs running for a particular active job.

Adding more jobs can help decrease the run time.

To change the number of jobs click the number of jobs currently running and a popup appears where you
can enter the new number of jobs you want the instance to run. Note the top of the popup box shows the
number of unused background jobs in the system at that point in time, in this case 22.

Instance is now running 10 jobs.

Alternatively you can click the arrow buttons to increase or decrease the jobs one at a time.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 49 of 100

Decrease Jobs
It is also possible to select an instance and decrease the number of jobs by selecting the “Decrease Jobs”
option, or selecting the left arrow icon beside the instance. It is only possible to select this option for
instances that are currently “In Progress”, and have more than one active job. MDR will prevent you
decreasing the number of jobs to zero, if it is the users intention to stop the processing of the Diffuser
report, then the user should select the “Stop” option. After a short period, and after selecting refresh the
user will notice that the number of active jobs decreases by 1.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 50 of 100

Pause
It is possible to Pause (or Stop) a program instance using this option. By selecting this option after selecting
a program instance, Diffuser tells the currently executing jobs to no-longer process any more intervals after
it completes the processing of the current intervals. The status of the Instance, and unprocessed intervals
changes to “Stopped”. You will need to click Refresh to update the status. This is a powerful option that is
used typically when a Diffuser program needs to be stopped temporarily due to the need to free up batch
resources, or stopped permanently if the report run is no longer required. When the instance is paused, the
Diffuser framework will not immediately stop all jobs that are currently running. It will instead prevent any
new intervals from being started. The more intervals there are the more control over the execution of the
instance an administrator will have.

The benefit Diffuser has over the traditional approach to executing reports is that the Diffuser program does
not need to start over again, execution can continue from where it left off. The intervals that have already
been processed do not need to be reprocessed unless of course it is deemed necessary by the user due to
perhaps a substantial amount of time passing before the program is allowed to continue. It is only possible
to pause an Instance that is currently in the “In Progress” status.

To pause a program simply select the instance and hit the pause button, you will be asked to confirm that
you want to.

Once all the intervals have completed the status of the instance changes as below.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 51 of 100

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 52 of 100

Resume
The “Resume” option allows the selected program instance to continue from the point it was stopped or
paused. This option uses the Technical Settings of the original program instance to reschedule the report.
By resuming an instance it does not reprocess any intervals that have a status of “Completed”, it changes
the status of a “Stopped” interval to “Available”. The restart option can only be selected for instances with
the status “Paused” or “Error”.

To resume a program select the instance and press the resume button, a pop appears for the number of
jobs required to start processing intervals.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 53 of 100

Delete
It is possible to delete a program instance by selecting the instance and then the “Delete” option. This in
turn deletes all the intervals and results belonging to the program instance. After the delete option is
selected the user is faced with a confirmation window to ensure the deletion was intentional. This option is
particularly useful in a testing environment and with instances that have errored. It is only possible to delete
instances with the status “Error” or “Completed”. The system will not allow an instance “In Progress” to be
deleted due to possible data inconsistencies.

To delete an instance select it right-click and select the Delete option as below.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 54 of 100

Force Error
By selecting an Instance, right-clicking and then the “Force error” option, the status of the program instance
is changed to “Error”. This allows instances that have technically completed successfully to be changed to
Error. This is basically an override function. It is only possible to set an instance to “Error” if there are no
active jobs executing the instance.

To delete an instance select it right mouse click and select the force error option as below.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 55 of 100

Reprocess Error
On finding an interval in error as below there is an option to reprocess where you have been able to fix the
cause of the error, such as updating some master data.

To reprocess the error select the instance in the status of error and right-click for the “Reprocess Error”
option as below.

Bear in mind the impact that running the interval out of sequence or at a later date may
have on your report or processing of data.

!

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 56 of 100

The same as resuming a Diffuser instance the popup for the number of processors you want to utilize
appears.

In this example the error is successfully reprocessed.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 57 of 100

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 58 of 100

Rename Instance
To rename an instance select the instance and right-click.

Enter the new name.

The new name is updated as below:

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 59 of 100

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 60 of 100

Debug an Interval
On finding an interval in error you also have the option of debugging the interval to try and work out what
went wrong.

Firstly ensure you have positioned your break point in the code, then select the interval and right-click for
the option to “Debug an Interval”

The debugger will then open at your break point.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 61 of 100

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 62 of 100

Scheduling Diffuser Programs
A Diffuser program can be scheduled just like any other background program. Typically this is done using
the standard transaction SM36. The program variants can also be saved as per normal.

Diffuser in most cases, however, does require another program to be scheduled for it to operate efficiently in
a production environment. The program function is to regenerate the Interval Variant. The purpose of
regenerating an Interval Variant is such that as the master or transactional data grows, the intervals can be
recalculated to ensure that each interval is evenly spread. This then ensures the Diffuser program is
processed as efficiently as possible.

The program /BTR/MDR_INTERVAL_REGENERATION is used for this purpose. This job should typically be
scheduled nightly at the beginning of the batch window, and can be executed for individual Interval Objects,
individual Interval Variants, or for all Interval Variants by adjusting the parameters on the selection screen.
For the Interval Regeneration to operate, you will need to configure the table /BTR/INTVALVARC. Here you
define an Interval Object, Interval Variant and the refresh age. The refresh age defines how frequently the
Interval Variant is refreshed. For example if for Object SCUSTOMID, Variant SAMPLE, if the refresh age is
7, the interval variant will only be regenerated every 7 days, even if the regeneration job is scheduled
nightly. This functionality allows you to avoid scheduling individual regeneration jobs in different reoccurring
cycles. You can override the refresh age functionality by selecting the “Force regeneration” check-box.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 63 of 100

Exception Handling and Application Logs
There are numerous situations where a Diffuser program is required to take some action. This action can
range from simply outputting informational messages to extreme cases where the program is required to
abend. A number of framework components exist in Diffuser so that your program can indicate to the
framework the current processing status and the manner in which your program is reacting to a particular
situation.
The interval processing subroutine is given a range of objects to process (the interval itself). During the
processing of these objects, a situation may occur where a particular object in the range is invalid. An
example of this may be that there is a problem with the database integrity of that particular object (e.g. an
invalid enumeration or configuration is missing). The Diffuser program has the option to either:

1. Output a message to the application log
2. Skip the current object and move on to the next
3. Abend the program

Alternatively, the program may be required to do a combination of the above. MDR provides the
developer with a number of statements to log exceptions:

The sample code below shows how to code messages raised inside MDR to be read via the application log.

FORM mdr_interval_processing
USING x_interval TYPE /btr/st_interval_values.
...

IF lv_error EQ gc_true.
mdr_msg_put 1 'E' '100' 'MSGCLASS' space space space space.

ENDIF.
...

ENDFORM.

The statement mdr_msg_put will output a message to the application log. It expects to be provided with the
following parameters:

1. Priority – The log level represents the importance of the message. This allows the person running the
program to determine what messages are outputted to the application log. The five categories that
can be used are:
Critical (1) – Used to represent that the message is critical
Important (2) – Used to represent that the message is important

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 64 of 100

Normal (3) – Used to represent that the message is of normal importance
Information (4) – Used to represent that the message is an informational message
Debugging (5) – Used to represent that the message is for debugging purposes

2. Message Type – The message type is the standard SAP message type and represents the type of
message. It must be one of the following five options:
Error (E) – Error message
Success (S) – Success message
Information (I) – Informational message
Warning (W) – Warning message
Abend (A) – Abend message – stops the program

3. Message Number – The message number is the standard SAP message number as defined in the
message class.

4. Message Class – The message class represents the standard SAP collection of messages.
5. Message variables – When you define a message in the standard SAP message class, placeholders

for variables may be defined. These placeholder variables can be passed in here. There may be up to
four message variables. If the message has no variables or there are less than four, then you should
use the “space” keyword – i.e. you must provide all four variables even if you simply use the space
keyword four times.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 65 of 100

Email Notification
On the technical settings tab of a Diffuser program there is a parameter “Distribution List”.
Diffuser provides the functionality to automatically send a notification to users SAP inbox as defined on the
Distribution List once the report results are complete. This improves the flow of information by ensuring that
results are passed onto the business users at the soonest possible moment. It is no longer necessary to rely
on business processes to notify and pass on a reports output to the business, instead a link to the report
output is sent automatically to the users inbox. The results can be accessed by this link.

Providing SAP Connect is configured in your system, these results can also be sent directly to the
corresponding users external email address. The link provides direct access to the report output, even if the
user is not initially logged into your SAP system.
This configuration is extremely simple. All it involves is configuring the appropriate users on the Technical
Settings screen, under Distribution List.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 66 of 100

For consistency, Diffuser provides the ability to send email notification of results of reports not migrated to
Diffuser format. Diffuser includes a program used to monitor background reports that have been scheduled
and determine whether a notification is to be sent to a user or a group of users indicating the completion of
the reports.
The notification is delivered in the same manner as Diffuser delivers the notification. This has the added
advantage that a link is sent to a user rather than the actual spool attachment (which may be very large).
Furthermore, it is possible to configure the email template used for the delivery of the notification.
In order to deliver notifications for standard/custom-built non-Diffuser reports and programs, the following is
required:

1. Initially, the configuration for the notification must be maintained in the view cluster (/BTR/CREPNTF)
to determine whom the notification should be sent to and with what template. This is done via
transaction SM34. The job name is critical in the configuration and will be used to determine if an
entry has been executed in the job schedule. The job (when configured to run in background) must
have the same name as entered in the configuration. If it doesn’t have the same name – it will not be
picked up and hence no notifications will be sent.
For each job you setup, you must also specify who will be notified when the report is finished.
Recipients are classified in various categories including:

a. Internal SAP Username
b. External Address
c. Organizational Unit (As defined in the HR Org Structure)
d. Internet Address

You can configure one or more of the above for each job setup. For each recipient, you may
also specify the template that is used when the notification is sent. This can be defaulted to
/BTR/MDR_REPORT_NOTIFICATION. If you want to customize the notification template at an
individual level, this can also be specified against the recipient. The recipient level template will
always take precedence over what has been specified at the job level.

2. During the normal batch schedule, the reports that have configured in the first step are executed as
per normal (in background).

3. The report /BTR/MDR_REPORT_NOTIFICATION must then be scheduled daily at the end of the
batch schedule. This will find all background jobs that have been executed (restricted on selection
criteria if required) and send the appropriate notification to the configured user(s).
Notifications are generally delivered to a user’s SAP Inbox. The document that is sent contains the
particulars about when the report was started, when it completed and how long it took. It also
specifies the report title and technical name.
The inbox item must be “Executed” by the user in order for them to be taken to the report output. This
is a simple matter of right-clicking on the Inbox item and selecting “Execute”. The user will then be
taken to the spool output immediately.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 67 of 100

Debugging and Troubleshooting
• Debugging Programs
• Troubleshooting

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 68 of 100

Debugging Programs
One of the major benefits provided is that the developer is able to debug their program in much the same
way as they would when they develop a normal program.
When first executing a program with Diffuser at the top of the selection screen is the “Technical Settings”
button, the option “Run online as a single process (debugging mode)”, allows the program to be run online.
This means that any break points that the developer has in their code, either hard-coded or dynamically set
from the editor, will be stopped at.

In addition on finding an interval in error you also have the option of debugging the interval to try and work
out what went wrong see “Debug an Interval” for details.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 69 of 100

Troubleshooting
When converting an existing program to use the Diffuser framework the obvious way to help find problems is
to run the original program and MDR program side by side to check the results, to remove the multiple
processing and intervals as possible issues keep the Diffuser program you can run it with just one large
interval.

Typical bugs introduced from converting a program to use Diffuser are:

• Global variables not being cleared at the end of the interval processing subroutine, if you have no
problem with one large interval the problem will most likely be around clearing global variables

• Repeating code in interval processing that is only required once per background job
• Variables not being stored for the transformation program, don’t forget anything that needs to be

displayed in the results needs to be stored into the results and retrieved by the transformation
program

When seeing Intervals with an error status you should look for short dumps via transaction ST22 and
messages against the background job as this should have also ended in failure. You can use the Debug an
Interval option to rerun the interval via a dialog process to help you find the error.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 70 of 100

Advanced Concepts
The details of advanced programming concepts are available here.

• Dynamic Interval Generation
• Authority Checks
• Application Program Interface

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 71 of 100

Dynamic Interval Generation
In some situations it may be necessary that you want the Intervals to dynamically change each time you
execute a Diffuser program. This is an alternate method of Interval Generation to the more commonly used
Interval Object method. Diffuser uses the concept of an Interval Generator to do this. An Interval Generator
allows you to write ABAP code to do this dynamic interval creation. A custom Interval Generator can be
implemented using the subroutine mdr_interval_generator in the Main program of the MDR program.

The impact on the selection screen is that the interval size and interval count options are displayed on the
“Technical Setting” screen, see the Technical Settings section for details on this.

The subroutine mdr_interval_generator is called at the beginning of the Diffuser program. This subroutine is
used to define the intervals that will be processed. The subroutine provides a single input structure that
contains both an interval count and an interval size. These are values that are set at run-time, and provide
information to the program on how it should break up the processing. The CHANGING parameter is a list of
Intervals to be processed. The developer writing the Diffuser program needs to implement logic to populate
the LOW and HIGH interval values of yt_intervals.

--
* FORM mdr_interval_generation
--
* This form is called by Diffuser to generate *
* interval ranges that can be coded as per your own requirements *
--
FORM mdr_interval_generation

USING x_input TYPE /btr/st_intgen_input
CHANGING yt_intervals TYPE /btr/tt_mdr_interval_values.

DATA :
lv_interval LIKE LINE OF yt_intervals.

DATA:
lv_interval_size TYPE i,
lv_interval_index TYPE i,
lv_interval_index_l TYPE i,
lv_remainder TYPE i,
lv_count TYPE i,
lv_count_numc TYPE numc10,
lv_count_intervals TYPE i,
lv_index TYPE syindex,
lv_low_index TYPE syindex,
lv_flag TYPE c.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 72 of 100

DATA: lt_sbook TYPE sbook,
ls_sbook TYPE sbook.

* Select bookings
SELECT *

FROM sbook
INTO TABLE lt_sbook

WHERE customid in s_custid

SORT lt_sbook.

DELETE ADJACENT DUPLICATES FROM lt_sbook.

DESCRIBE TABLE lt_sbook LINES lv_count.

IF x_input-interval_size IS INITIAL.

* Determine the size of each interval
lv_interval_size = lv_count DIV x_input-interval_count.
lv_remainder = lv_count MOD x_input-interval_count.

IF NOT lv_remainder IS INITIAL.

ADD 1 TO lv_interval_size.
ENDIF.

ELSE.

lv_interval_size = x_input-interval_size.

ENDIF.

lv_interval_index = lv_interval_size.

* Find the first low for the interval
CLEAR ls_sbook.
READ TABLE lt_sbook INTO ls_sbook INDEX 1.

lv_interval-low = ls_sbook-custid.

DO.

* Get the last number in this package of data
CLEAR ls_sbook.
READ TABLE lt_sbook INTO ls_sbook INDEX lv_interval_index.

IF sy-subrc EQ 0.

* Provided something was found store this in the high

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 73 of 100

lv_interval-high = ls_sbook-custid.

APPEND lv_interval TO yt_intervals.
CLEAR lv_interval.

* Add one to the interval index to find the new low for the next interval
lv_interval_index_l = lv_interval_index + 1.

CLEAR ls_sbook.
READ TABLE lt_sbook INTO ls_sbook INDEX lv_interval_index_l.
IF sy-subrc = 0.

* If a record is found we have a new interval to create so create the low
* else interval creation is complete so exit

lv_interval-low = ls_sbook-custid.
ELSE.

EXIT.
ENDIF.
lv_interval_index = lv_interval_index + lv_interval_size.

ELSE.

* Fill the last entry of the intervals with the last entry
CLEAR ls_sbook.
READ TABLE lt_sbook INTO ls_sbook INDEX lv_count.

IF ls_sbook-custid >= lv_interval-low .
lv_interval-high = ls_sbook-custid.
APPEND lv_interval TO yt_intervals.

ENDIF.
EXIT.

ENDIF.

ENDDO.

ENDFORM.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 74 of 100

Authority Checks
Authorizations are now delivered with Diffuser out of the box, see Authorisations.

If you want to introduce more advanced security into Diffuser the following steps show how you can
enhance the controls.

• Implementation
• Technical Settings
• Expert Mode
• Individual Actions

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 75 of 100

Authorisations
Out of the box authorisations are now supplied with Diffuser.

There is an expert and user role supplied further details are below.

Expert role /BTR/DIF:EXPERT

This involves access to the following transactions:

/BTR/MINICUBE
/BTR/DIFFUSER
/BTR/LICENSE
/BTR/MDR
/BTR/MDRH
/BTR/MDRH_OLD

User role /BTR/DIF:USER

This involves access to the MiniCube transaction /BTR/MINICUBE with Diffuser Mode giving an error
message as below.

Note this role also includes the authorisation object for Background Processing: Background
Administrator (S_BTCH_ADM) to allow the expert user to add and remove background
processing jobs to a Diffuser run.
*

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 76 of 100

The distribution component of technical settings is disabled so the user cannot determine the number of
jobs that a program uses when running with Diffuser, as below.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 77 of 100

Diffuser also provides enhancement spots to allow developers to apply customer specific authority checks.
This can be used to restrict technical as well as administrative settings at a user and program level.

For more information refer to the section Authority Checks in the Z Accelerators Guide.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 78 of 100

http://docs.basistechnologies.com/z-accelerators-developers-guide/8.2/en/topic/authority-checks

Implementation
Diffuser contains enhancement spot /BTR/MDR_ENH_AUTH_CHECK. Go to SAP standard transaction
SE18 to access it.

This enhancement spot contains BAdI definition /BTR/MDR_BADI_AUTH_CHECK_EXP which can be
implemented to restrict access to both the Expert Mode functionality and the Technical Settings of Diffuser
programs.

To implement BAdI definition /BTR/MDR_BADI_AUTH_CHECK_EXP create a custom class using interface
/BTR/MDR_IF_AUTH_CHECK_EXP in SE18 (More information on how to implement a BAdI can be found in
SAP standard documentation).

Once your class implementation of BAdI definition /BTR/MDR_BADI_AUTH_CHECK_EXP is in place,
implement interface method AUTH_CHECK_TECH_STTGS.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 79 of 100

The example above uses custom implementing class ZCL_MDR_AUTH_CHECK. Click on the method name
to drill into its implementation and add your custom code. The signature of this method imports the program
ID so you can set restrictions at program level.

The following sections will demonstrate how to implement controls around Technical Settings, Expert Mode
and Individual Actions.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 80 of 100

Technical Settings
There are two options to control the authorizations for Technical Settings.

When the changing parameter LCK_EXPT_MODE is set to true only the job distribution section of the
Technical Settings screen is grayed out (see below).

Technical Settings will look like this:

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 81 of 100

When the changing parameter LCK_TECH_SETT is set to true all input fields of the Technical Settings
screen is grayed out (see below).

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 82 of 100

Technical Settings will look like this:

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 83 of 100

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 84 of 100

Diffuser Mode
Access to the Diffuser Mode button on the MiniCube transaction /N/BTR/MINICUBE is now restricted by
default see Authorisations topic for details.

To hide the Diffuser Mode button use BAdI implementing class method AUTH_CHECK_PF_STATUS. An
example can be seen below which shows how to hide the Diffuser Mode button as well as links to the
Diffuser Defintion, Capacity Groups and License Key buttons if you require any of these not to be shown.

The Diffuser Mode button will then not be shown as below:

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 85 of 100

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 86 of 100

Individual Actions
BAdI definition /BTR/MDR_BADI_AUTH_CHECK_EXP offers the ability to restrict access to individual
functions. For instance, actions like deleting an instance run, pausing or increasing number of batch jobs
can be restricted at program level.

To restrict by individual buttons the technical codes are as below:

Button Constant

Application Log /BTR/CL_MDR_CONSTANTS-CO_FUNC_APPLOG

Results /BTR/CL_MDR_CONSTANTS-CO_FUNC_RSET

Intervals /BTR/CL_MDR_CONSTANTS-CO_FUNC_IVLS

Variants /BTR/CL_MDR_CONSTANTS-CO_FUNC_VRNTS

Resume /BTR/CL_MDR_CONSTANTS-CO_FUNC_RESUME

Stop /BTR/CL_MDR_CONSTANTS-CO_FUNC_STOP

Application Servers /BTR/CL_MDR_CONSTANTS-CO_FUNC_APPSVRS

BAdI implementing class method AUTH_CHECK_FCODE. An example of the code can be seen below:

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 87 of 100

Even with Diffuser mode selected the impact of the code is shown below:

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 88 of 100

Application Program Interface
A suite of APIs have been introduced to allow the retrieval of information and the administration of a Diffuser
instance from code external to Diffuser.

The following sections will provide details on how to use the APIs, if you do run into difficulties or have
questions please reach out to our support team, details on how to do that are here.

• Overview
• Selecting Instances
• Get Details
• Pause
• Restart
• Change Jobs

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 89 of 100

Overview
A suite of APIs have been introduced to allow the retrieval of information and the administration of a Diffuser
instance, these have been built in the Function Group /BTR/MDR_API and have been remote-enabled.

Selections of Diffuser instances similar to the MiniCube selection can be made see here for details.

The Instance ID or Jobname and Jobcount can be used as parameters and used to perform the following
actions on a Diffuser instance:

• Pause Instance, further details here
• Restart Instance further details here
• Change number of processors running against an instance further details here

The following information on a Diffuser instance can be retrieved:

• Status
• Estimated time remaining
• Percentage complete
• Number of intervals completed
• Number of intervals remaining
• Number of active background processes operating

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 90 of 100

Selecting Instances
To select a list of instances and their details use the Function Module /BTR/MDR_GET_INSTANCES here
you can use a number of selection criteria to retrieve instances of programs that have run or are still running
using Diffuser.

The following selection criteria can be used and ranges can be entered if required:

Background Job Name – The SAP background job name for the instance run
Job ID – The SAP background job id for the instance run
Instance Object ID – The unique object ID generated for each instance run
Start User – User who started the instance run
Start Date – Start date of the instance run
Start Time – Start time of the instance run
End Date – End date of the instance run
End Time – End time of the instance run
Instance Status – Current status of the instance (see instance details for technical codes)
Program Name – Technical program name of the the Diffuser program

The following details are returned for each instance that meets the selection criteria:

Client – The SAP client that the data was retreived from
Instance Object ID – The unique object ID generated for each instance run
Program Object ID – The unique object ID generated for each program configured into the Diffuser
framework
Program Version – The version of the man program
Result Object ID – The unique object ID for the result set
Run Variant – Name of variant (without program name)
Instance Label – The description given to the instance run
Searchterm – Instance Label
Log Handle – The handle for the application log
Instance Status – Current status of the Diffuser program (see instance details for technical codes)
Start User – User who started the instance run

Note that Diffuser programs run in the foreground do not have a Background Job Name or a
Job ID*

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 91 of 100

Start Date – Start date of the instance run
Start Time – Start time of the instance run
Collation Start Date – Start date of the collation routine
Collation Start Time – Start time of the collation routine
End Date – End date of the instance run
End Time – End time of the instance run
Background Job Name – The SAP background job name for the instance run
Job ID – The SAP background job id for the instance run
Background Job Name – The SAP background job name for the instance run
Job ID – The SAP background job id for the instance run
Archive – Archive flag

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 92 of 100

Get Details
The Function Module /BTR/MDR_GET_INSTANCE_DETAILS returns details for a single instance.

The following selection parameters can be used, however, you must use the Instance Object ID or
Background Job Name and Job ID, it is recommended that the Instance Object ID is used as this is unique
and always exists, job details are not present for instances run with a dialog session.

Background Job Name – The SAP background job name for the instance run
Job ID – The SAP background job id for the instance run
Instance Object ID – The unique object ID generated for each instance run
Start User – User who started the instance run
Start Date – Start date of the instance run
Start Time – Start time of the instance run
End Date – End date of the instance run
End Time – End time of the instance run
Instance Status – Current status of the instance (see instance details for technical codes)
Program Name – Technical program name of the the Diffuser program

The following details are returned for the instance:

Instance Object ID – The unique object ID generated for each instance run
Background Job Name – The SAP background job name for the instance run
Job ID – The SAP background job id for the instance run
Status – The technical code for the current status of the instance (see instance details for technical codes)
Status Description – Description for the current status of the instance (see instance details for technical
codes)
Estimated Time to completion – Estimated amount of time left to complete the instance
Percentage – Percentage of intervals that are complete for the instance
Intervals Completed – Number of intervals with a completed
Intervals Remaining – Number of intervals which remain to be completed
Active Jobs – Number of active background jobs currently progressing against the instance

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 93 of 100

Pause
The Function Module /BTR/MDR_INSTANCE_PAUSE pauses an instance so that all jobs stop once they
complete the interval they are processing, this is the same as using the pause option in the MiniCube
transaction.

The following selection parameters can be used, however, you must use the Instance Object ID or
Background Job Name and Job ID, it is recommended that the Instance Object ID is used as this is
unique and always exists, job details are not present for instances run with a dialog session.

Background Job Name – The SAP background job name for the instance run
Job ID – The SAP background job id for the instance run
Instance Object ID – The unique object ID generated for each instance run

The following details are returned for the instance:

Instance Object ID – The unique object ID generated for each instance run
Background Job Name – The SAP background job name for the instance run
Job ID – The SAP background job id for the instance run
Status – The technical code for the current status of the instance (see instance details for technical codes)
Status Description – Description for the current status of the instance (see instance details for technical
codes)
Estimated Time to completion – Estimated amount of time left to complete the instance
Percentage – Percentage of intervals that are complete for the instance
Intervals Completed – Number of intervals with a completed
Intervals Remaining – Number of intervals which remain to be completed
Active Jobs – Number of active background jobs currently progressing against the instance

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 94 of 100

Restart
The Function Module /BTR/MDR_INSTANCE_RESTART restarts an instance that had be paused, this is the
similar to using the resume option in the MiniCube transaction, however, you must then call the change jobs
function module to provision jobs to the instance.

The following selection parameters can be used, however, you must use the Instance Object ID or
Background Job Name and Job ID, it is recommended that the Instance Object ID is used as this is
unique and always exists, job details are not present for instances run with a dialog session.

Background Job Name – The SAP background job name for the instance run
Job ID – The SAP background job id for the instance run
Instance Object ID – The unique object ID generated for each instance run

The following details are returned for the instance:

Instance Object ID – The unique object ID generated for each instance run
Background Job Name – The SAP background job name for the instance run
Job ID – The SAP background job id for the instance run
Status – The technical code for the current status of the instance (see instance details for technical codes)
Status Description – Description for the current status of the instance (see instance details for technical
codes)
Estimated Time to completion – Estimated amount of time left to complete the instance
Percentage – Percentage of intervals that are complete for the instance
Intervals Completed – Number of intervals with a completed
Intervals Remaining – Number of intervals which remain to be completed
Active Jobs – Number of active background jobs currently progressing against the instance

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 95 of 100

Change Jobs
The Function Module /BTR/MDR_INSTANCE_CHANGE_JOBS the number of jobs operating on the Diffuser
instance to be changed.

The following selection parameters can be used, however, you must use the Instance Object ID or
Background Job Name and Job ID, it is recommended that the Instance Object ID is used as this is
unique and always exists, job details are not present for instances run with a dialog session.

Background Job Name – The SAP background job name for the instance run
Job ID – The SAP background job id for the instance run
Instance Object ID – The unique object ID generated for each instance run
Number of Jobs – Number of jobs to increase or decrease by
Action – To increase jobs by the number of jobs above use ‘INCJOB’ (default option) or to decrease the
number of jobs use ‘DECJOB’

The following details are returned for the instance:

Instance Object ID – The unique object ID generated for each instance run
Background Job Name – The SAP background job name for the instance run
Job ID – The SAP background job id for the instance run
Status – The technical code for the current status of the instance (see instance details for technical codes)
Status Description – Description for the current status of the instance (see instance details for technical
codes)
Estimated Time to completion – Estimated amount of time left to complete the instance
Percentage – Percentage of intervals that are complete for the instance
Intervals Completed – Number of intervals with a completed
Intervals Remaining – Number of intervals which remain to be completed
Active Jobs – Number of active background jobs currently progressing against the instance

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 96 of 100

Software Support

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 97 of 100

Online Forum
Basis Technologies have an online forum containing over 250 searchable Frequently Asked Questions
relating to our products.

These FAQs cover many of the common error / warning messages that can be experienced during normal
usage and also useful HOW TO guides to perform many of the common operations.

The online forum can be accessed via the following URL:

http://support.basistechnologies.com/forums

You will need to register for a username and password before you can access the forum.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 98 of 100

Support from Basis Technologies

Raising Support Tickets
To request support from Basis Technologies on any issue relating to our product sets (ActiveControl,
Transport Expresso, DevOps, Testimony, Diffuser, Utilities or Transformation), a ticket should be raised via
the following email address:

support@basistechnologies.com

Sending an email to this address will automatically create a ticket in Zendesk, the ticketing tool used by
Basis Technologies.

To help us offer you the best service with your issue, please include as much information as possible about
the issue, with particular attention to the following:

• Customer: Include the name of the customer you are representing, it may not always be obvious from
your email address

• Product and Version: Include the Basis Technologies product and version that you are operating
that has the issue

• System & Client: The system and client where the issue/fault occurred and if it’s a license key issue
provide the SAP system installation number (it is always ten digits long)

• Description: A clear description of the problem and the steps to replicate the issue, with screen shots
• Data: Any master or transactional data objects associated with the issue. E.g. Business Partner,

BPEM Case ID, Plant
• Error Messages: Details of any error or warning messages given including where applicable run time

errors, short dumps and error logs
• User ID: The User ID being used when the issue occurred
• Authorisations: Ensure transaction SU53 is run and results shared to help with authorisation issues
• Contact Details: Please include your own contact details in your email
• Priority: Reflect any high priority issues by including URGENT or HIGH PRIORITY at the start of the

email subject

Support Escalation
If you have any concerns with the service you are getting from Basis Technologies support, or wish to
escalate any high priority issues please email supportescalation@basistechnologies.com

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 99 of 100

Require additional Information or Services?
If additional information or services relating to any of Basis Technologies product sets is required, you can
contact us via the above support@basistechnologies.com address, or alternatively by contacting your
assigned Basis Technologies Account Director.

Basis Technologies Z Accelerators - Developers Guide - 8.2

Page 100 of 100

	Table of Contents
	Audience
	Introduction
	Prerequisites
	Basic Concepts
	Architecture
	Diffuser
	MiniCube
	Instance
	Intervals
	Capacity Groups
	When to use Z Accelerators
	Main Program
	General
	Declaration
	Selection Screen Definition
	START-OF-SELECTION Event
	Interval Processing Subroutine
	Collating Interval Results
	AT SELECTION-SCREEN OUTPUT
	Transformation Program
	Regular Transformation Program
	Selection Screens and Transformation Programs
	Setting up a Diffuser program
	Program Definition
	Default Technical Settings
	Interval Generation
	Running Diffuser Programs
	Technical Settings
	Developer Notes
	Administering Diffuser Programs
	Diffuser Mode
	Results
	Intervals
	Variants
	App Servers
	Increase or Decrease Jobs
	Decrease Jobs
	Pause
	Resume
	Delete
	Force Error
	Reprocess Error
	Rename Instance
	Debug an Interval
	Scheduling Diffuser Programs
	Exception Handling and Application Logs
	Email Notification
	Debugging and Troubleshooting
	Debugging Programs
	Troubleshooting
	Advanced Concepts
	Dynamic Interval Generation
	Authority Checks
	Authorisations
	Implementation
	Technical Settings
	Diffuser Mode
	Individual Actions
	Application Program Interface
	Overview
	Selecting Instances
	Get Details
	Pause
	Restart
	Change Jobs
	Software Support
	Online Forum
	Support from Basis Technologies
	Raising Support Tickets
	Support Escalation
	Require additional Information or Services?

