
Integrations (Direct)
GitLab — Last update: 31 October 2022

Basis Technologies

Copyright © 2022 Basis Technologies

Table of Contents
1. Document Purpose.. 1

2. ActiveControl Integration Framework .. 3

3. GitLab Integration.. 5

4. Integration Components ... 7
4.1. Pre-Requisites ... 8
4.2. Outbound Integration.. 10

4.2.1. SAP User ... 11
4.2.2. ActiveControl General Configuration .. 12

4.2.2.1. Custom Fields.. 13
4.2.2.2. Import Options ... 14

4.2.3. SAP configuration tables .. 15
4.2.3.1. /BTI/TE_INT_SYST.. 16
4.2.3.2. /BTI/TE_INT_CLAS ... 17
4.2.3.3. /BTI/TE_INT_PC ... 18
4.2.3.4. /BTI/TE_INT_PROC... 19
4.2.3.5. /BTI/TE_INT_MAPP... 20
4.2.3.6. /BTI/TE_INT_MAPX... 22
4.2.3.7. /BTI/TE_GITLABBR ... 24
4.2.3.8. /BTI/TE_TVARV .. 25
4.2.3.9. /BTI/TE_RF.. 27
4.2.3.10. /BTI/TE_INT_USR ... 28

4.2.4. SAP Programs ... 29
4.2.4.1. /BTI/TE_INTEG_TRIGGER .. 30
4.2.4.2. /BTI/TE_INTEG_SEND .. 31
4.2.4.3. /BTI/TE_RNOTIFICATION_ENGINE .. 32

4.2.5. Integration Setup (GitLab) .. 34
4.2.5.1. GitLab User ... 35

4.3. Inbound Integration .. 36
4.4. ActiveControl HTTP API ... 37

4.4.1. Get Queue Contents .. 38
4.4.2. Lock Queue ... 43
4.4.3. Unlock Queue .. 45

4.5. Error Logging ... 47

5. Further Information ... 48

1. Document Purpose
Introduction

ActiveControl includes an out-of-the-box Integration Framework which has enabled bi-directional
integration capabilities with ITSM products such as JIRA, ServiceNow and HPSM for many years.

More recently, this Integration Framework has evolved to also be used to faciliate Customer
requirements to integrate ActiveControl with DevOps and Automated Testing products.

Gitlab Integration as part of a CI/CD pipeline

During early 2018, the ActiveControl Integration Framework capability was extended to include an
integration with GitLab, a third-party DevOps product used increasingly within IT organisations to
automate aspects of software development building, testing and deployment. This integration was built
on the back of a specific requirement for a new Customer wanting to to evolve their continuous
integration and continuous delivery (CI/CD) capabilities in delivering SAP change as part of an
ActiveControl workflow (along with non-SAP change delivered outside of ActiveControl).

Gitlab integration to trigger Automated Testing

During early 2020, a Jenkins integration (to trigger automated testing in Selenium) was created as a
proof of concept by Basis Technologies. Later in the same year, the triggering of automated testing in
Tosca via GitLab as part of an ActiveControl workflow was implemented as part of another new
Customer requirement. The rest of this Integration Guide summarises this Gitlab integration capabiity. It
should be noted that this document (and Basis Technologies integration solution) is testing tool agnostic;
ie the same Gitlab integration could potentially be used to trigger automated testing within different 3rd
Party testing products and not just Tosca.

Document Audience

The intended audience for this document are the technical teams looking to implement integration
between ActiveControl and GitLab. It does not detail how ActiveControl can be configured to manage the
change process and it assumes a reasonable knowledge of standard change processes with SAP, and
also an existing working knowledge of ActiveControl administration and configuration.

The ActiveControl Gitlab integration is currently not an out-of-the-box ‘plug it and play’
Integration in the sense of many of the more established and mature ActiveControl
integrations with ITSM tools such as JIRA or ServiceNow. It should be anticipated that

!

Basis Technologies Integrations (Direct) - GitLab_en

Page 1 of 48

some sort of consulting – and possible even development – services will be required to
setup the integration, both on the Basis Technologies side and also Customer
technology team. Technical expertise on GitLab will also be required on the Customer
side for the installation and setup of GitLab. Basis Technologies responsibilities lie in
sending the relevant paylod from ActiveControl to Gitlab as an Outbound integration, and
in processing the results sent back to ActiveControl as an inbound integration. The
Customer technologies team are responsible for processing this information from GitLab
out to the automated testing tool , and sending back results (ie pass or fail) to
ActiveControl as an inbound integration.

Basis Technologies Integrations (Direct) - GitLab_en

Page 2 of 48

2. ActiveControl Integration Framework

ActiveControl Domain Controller
The architecture of ActiveControl can be broken down into: client software, a controlling SAP system,
other participating SAP systems and integration systems. The diagram below illustrates the central role
of the controlling SAP system – referred to as the ActiveControl “domain controller”.

The majority of ActiveControl (and Integration) configuration is done within the Domain Controller
system. Unless specifically mentioned, all SAP setup detailed in this GitLab Integration Guide is done in
the ActiveControl Domain Controller SAP system.

The Integration Framework Architecture
The ActiveControl Integration Framework is divided between inbound and outbound processes.

More information on the ActiveControl Domain Controller concept can be found in the
main ActiveControl Administrator Guide documentation available at
https://docs.basistechnologies.com/.
*

Basis Technologies Integrations (Direct) - GitLab_en

Page 3 of 48

• For outbound calls there is a configurable framework that includes data extraction, transformation,
mapping and sending routines, alongside error detection, correction and reporting.

• For inbound calls, those made by a third party system into ActiveControl, a number of web
services are exposed allowing the external system to manipulate ActiveControl objects. Calls to
ActiveControl web services will return appropriate error messages, but expect the calling system
to deal with queuing, service levels and retries for failed integration transactions. The inbound
solution for the GitLab integration specifically, is detailed later in this Integration Guide.

Basis Technologies Integrations (Direct) - GitLab_en

Page 4 of 48

3. GitLab Integration

Example GitLab integration
The below workflow diagram describes a potential GitLab Integration scenario as part of an overall
ActiveControl workflow. A JIRA integration is also depicted in this example.

Figure: Potential Gitlab (and JIRA) integration reflected as part of an ActiveControl workflow

Key Points of a bi-directional GitLab integration

Outbound Integration

i) When transports land in a (configurable) Control Point location within the ActiveControl workflow, the
outbound integration is triggered.

ii) A payload is sent by ActiveControl to GitLab, containing all relevant field information relating to the
associated Business Tasks and Transport Forms. This would likely include Custom Field information,
where the Transport Form owner (ie Developer or Functional) or other such SAP resource could record
the relevant automated test scripts to be run.

iii) ActiveControl can also automatically lock the Import Queue at this point (since in most circumstances,
a customer would not want further transports to be imported whilst an automated testing cycle is
running).

iv) On receiving the payload, Gitlab would process and trigger the relevant automated testing within the

Basis Technologies Integrations (Direct) - GitLab_en

Page 5 of 48

Customers testing tool.

Inbound Integration

i) On completion of automated testing cycle, GitLab would receive pass/fail information back from the
automated testing tool, and send this back to ActiveControl.

ii) ActiveControl would process this pass/fail information, and move the associated Business Tasks /
Transport Forms forward to the next location in the workflow (in the event of successful automated
testing).

iii) ActiveControl would automatically unlock the Import Queue, so that subsequent transports/changes
can again be imported to the SAP system.

Basis Technologies Integrations (Direct) - GitLab_en

Page 6 of 48

4. Integration Components
The following components form part of the ActiveControl / Gitlab Integration solution.

1. Summary Notes

1 Remote Function Calls None

2 System Users Refer to here

3 Number Range Refer to here

4 Configuration Tables Refer to here

5 Application Tables Yes

6 Programs Refer to here

7 APIs None required for Gitlab integration

8 User Exit None required for Gitlab integration

9 Jobs Yes

10 Error Logging Refer to here (Outbound logging only)

11 General Configuration Refer to here

12 Gitlab setup Refer here

Basis Technologies Integrations (Direct) - GitLab_en

Page 7 of 48

4.1. Pre-Requisites
The following are pre-requisites for setting up the ActiveControl integration with Gitlab.

It should be noted that these setup activities are the responsibility of the Customer team; Basis
Technologies do not have expertise in GitLab.

1. Install GIT

A pre-requisite for using the ActiveControl/GitLab integration is to have GIT installed within the
ActiveControl Domain Controller SAP system.

A good online source of information can be found here.

2. Setup Remote Repository

A Remote Repository is required to be setup within GitLab, for ActiveControl.

This repository should be given a name such as “ActiveControl” or “ActiveControl_ECC” – depending on
the exact customer requirements for the Integration.

3. GitLab pipeline

GitLab pipeline should be setup for the ActiveControl remote repository created in the previous step.

4. Clone Remote Repository

The ActiveControl remote repository within Gitlab should be cloned in the local git installation. This will
create the folder where ActiveControl will write the outbound information (ie Business Task change file)

h3. 5. Define the scripts used via transaction SM49 in the ActiveControl Domain Controller SAP system

gitswitch.sh – switches branches
gitpush.sh – pushed changes into the remote repository
gitindir.sh – used for troubleshooting

(these will be provided by Basis Technologies)

Basis Technologies Integrations (Direct) - GitLab_en

Page 8 of 48

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

6. Test Connections

After performing the previous steps to setup Git, perform Add, Commit and Push of initial
AC_BT_Change.json file (this will be provided by Basis Technologies).

This will This will test out the connection between the ActiveControl Domain Controller SAP system and
GitLab.

Basis Technologies Integrations (Direct) - GitLab_en

Page 9 of 48

4.2. Outbound Integration
Basis Technologies Integrations (Direct) - GitLab_en

Page 10 of 48

4.2.1. SAP User
A SAP user is required to support the Gitlab Integration.

The Integration could potentially use the existing AC_BATCH user, however given that this User is what
the Test Results will be signed off against as part of the Integration – most customers might prefer to use
a seperate System user for the Gitlab integration to help differentiate events relating to the Gitlab
Integration from other Integrations (eg Jira or ServiceNow), or other events such as Scheduled Imports
within ActiveControl.

If creating a seperate User, it should have the same authorisations as the AC_Batch user:

• /BTI/TE:CTS_ADMIN_USER
• /BTI/TE:CTS_RFC
• /BTI/TE:COMP_ADMIN_ROLE

Basis Technologies Integrations (Direct) - GitLab_en

Page 11 of 48

4.2.2. ActiveControl General Configuration
Basis Technologies Integrations (Direct) - GitLab_en

Page 12 of 48

4.2.2.1. Custom Fields
The ActiveControl / Gitlab integration for automated testing relies on GitLab being able to tell the testing
tool what automated tests need to be performed.

In most scenarios, this is best done by the user (ie a Developer or Tester) manually indicating on the the
Business Task (or Transport Form) what automated testing scripts should be performed against the
particular Change or Transport. This is achieved in the current Integration through the use of custom
field(s) on the Business Task or Transport Form (or both depending on the exact Customer
requirement); these Custom Fields are configured via the Windows GUI configuration [Fields] tab in the
usual way.

Figure: Custom Field creation in the ActiveControl Windows GUI

The information stored in these custom field(s) information is passed over to GitLab as part of the
outbound Integration (along with the Business Task and Transport Form information) – and the
Customer Gitlab Administrator would then need to pass this information over from GitLab to the 3rd
Party test tool to trigger the associated automated testing.

Basis Technologies Integrations (Direct) - GitLab_en

Page 13 of 48

4.2.2.2. Import Options
As the Outbound integration is triggered by transports being imported into a system and landing in the
Test Queue, it is advisable to DISABLE the following target configuration option:

Continue importing transport requests when an import error occurs

It is also recommended to ENABLE the following target configuration option:

Continue importing queued transport requests for scheduled imports.

Figure: Recommended Import target configuration within ActiveControl to support an automated testing
Integration.

Basis Technologies Integrations (Direct) - GitLab_en

Page 14 of 48

4.2.3. SAP configuration tables
Basis Technologies Integrations (Direct) - GitLab_en

Page 15 of 48

4.2.3.1. /BTI/TE_INT_SYST
Table /BTI/TE_INT_SYST is used to specify the integrations that are running, and also some key
information relating to the integration.

It is possible to run multiple Integrations as part one ActiveControl implementation.

Field Explanation

EXTSYS_NO
Integration System Number, this is a unique numerical identifier of the system to
integrate with (as it is possible to integrate with multiple systems)

EXTSYS_ID External System ID

EXTSYS_NAME Name of External System

RFC_DEST Name of the RFC Destination used for the Integration.

DDCINT Not required for Gitlab Integration.

TASKFIELD_LINK Not required for Gitlab Integration.

A
FORMFIELD_LINK

Not required for Gitlab Integration.

INT_USER Not required for Gitlab Integration.

INT_PASSWORD Not required for Gitlab Integration.

Example configuration

Basis Technologies Integrations (Direct) - GitLab_en

Page 16 of 48

4.2.3.2. /BTI/TE_INT_CLAS
Table /BTI/TE_INT_CLAS is used to define Integration(s) and their corresponding Class; the classes are
the bulk of the integration processing is done.

The ActiveControl integration works on the principle of having a class for each external system that we
need to integrate with.

Field Explanation of Field

EXTSYS_NO Integration system number (as configured in /BTI/TE_INT_SYST

CLASSNAME
Integration works on the principle of having a class for each external system that we need to
integrate with.

Example configuration

Basis Technologies Integrations (Direct) - GitLab_en

Page 17 of 48

4.2.3.3. /BTI/TE_INT_PC
Table /BTI/TE_INT_PC details the process codes that are available as part of the Integration Integration
Framework.

Field Description

PROCESS_CODE
The process codes used by the integration framework to perform some kind of
action. The framework gets shipped with two standard process codes CREATE
and UPDATE.

CODE_DESCRIPTION Description of above code.

Example configuration

As part of Gitlab integration, only CREATE process code is used / required.*

Basis Technologies Integrations (Direct) - GitLab_en

Page 18 of 48

4.2.3.4. /BTI/TE_INT_PROC
Table /BTI/TE_INT_PROC is used within the Integration Framework to define the Process Identifiers that
are used within the Integration.

Field Description

EXTSYS_NO Integration system number (as configured in /BTI/TE_INT_SYST

EXTSYS_NAME Full description of external system

IDENTIFIER

This identifier is the crux of the integration framework and denotes a point of
integration, more than likely this would be some kind of internal id, in our OOTB
example it is a task status. This point of integration is attached to a process code
denoted above and this is what would cause an integration to be performed when
this identifier is reached.

PROCESS_CODE
The process codes used by the integration framework to perform some kind of
action. The framework gets shipped with two standard process codes CREATE and
UPDATE.

IGNORE_CHANGES
This flag is set when you wish to ignore previous changes in case the integrated
object has skipped through more than one integration point since the integration
trigger program was last run.

Example configuration

As part of GitLab integration, only CREATE process code is used. However it is a slightly
unique use of CREATE, as in most other existing Integrations such as with ServiceNow
and JIRA, the CREATE is used to create a Business Task within ActiveControl.
*

Basis Technologies Integrations (Direct) - GitLab_en

Page 19 of 48

4.2.3.5. /BTI/TE_INT_MAPP
An essential part of the integration framework is mapping ActiveControl fields to the equivalent fields on
any external system.

This is achieved using the table ‘/BTI/TE_INT_MAPP’.

Ideally, this process will need to be undertaken before the framework can be used. For general fields the
ActiveControl field should be entered complete with table name into field TEFIELDREF and the external
fieldname must be entered in the EXTERNAL_REF field. There is also the functionality to be able to
reference any ActiveControl Custom fields the custom field ID’s would need to be added to
TECUSTFIELD_REF, also multiple line itemed fields are able to be handled here such as text fields.
Finally, on the mapping table there is a KEY_FIELD field this is used to hold the external system record
key in general use a specific non display custom field on the task would be created for this purpose.

Field Description

EXTSYS_NO Integration system number (as configured in /BTI/TE_INT_SYST

EXTSYS_NAME Full description of external system

TEFIELDREF
This is the AC Field that needs to be mapped to a field on the external system. This
table name is required in the field as well. I.e. /BTI/TE_TASK-PRIORITY

EXTERNAL_REF
This is the fieldname that the frameworks calling web service needs to reference to
map across the data.

KEY_FIELD
This field is the link between the AC record, in our task record we have set up a
custom field which is hidden from view and in here we store the ID of the created
record on the integrated system.

TECUSTFLD_REF ID of AC Custom field to be mapped.

DEFAULT_VAL Defaulted Value to be mapped over to the integrated system field.

Basis Technologies Integrations (Direct) - GitLab_en

Page 20 of 48

Example Configuration

Basis Technologies Integrations (Direct) - GitLab_en

Page 21 of 48

4.2.3.6. /BTI/TE_INT_MAPX
Fields to be mapped for some json fields have to be set in table /BTI/TE_INT_MAPX in the ActiveControl
Domain Controller SAP system

/BTI/TE_INT_MAPX can be used to send over Custom Field numbers to Gitlab, which may be needed
for processing on the receiving end, as part of CI/CD pipeline or automated testing activities.

Field Description

EXTSYS_NO Integration system number (as configured in /BTI/TE_INT_SYST

GROUPCODE

SEQUENCE_NO

SOURCEFIELD ActiveControl field number (from ActiveControl Windows GUI

DESTFIELD

Destination field, name of the field on the receiving end. For the Gitlab integration – the
following are the available DESTFIELD values:

‘ReleaseNum’
‘CodeID’
‘Commit_Approval’
‘Commit_Approver’
‘Unit_Test_Count’
‘Unit_Test_Pass’
‘Unit_Test_Fail’ ‘Transports’
‘TRnum’
‘TRtype’
‘TRowner’
‘TRapprover’
‘taskID’

DATAFORMAT

h3 Example Configuration

Basis Technologies Integrations (Direct) - GitLab_en

Page 22 of 48

Basis Technologies Integrations (Direct) - GitLab_en

Page 23 of 48

4.2.3.7. /BTI/TE_GITLABBR
GitLab Branch Repositories are configured in table /BTI/TE_GITLABBR

Field Description

EXTSYS_NO Integration System Number [as defined in /BTI/TE_INT_SYST]

ProjectID Is the ActiveControl project ID assigned to the Business Task

SYSID
is the origin of the transports (At this stage we assume all the transports in a task come
from the same source)

BRANCH_NAME is the branch to commit to

Directory is the repository location

FILENAME is the name of the json file that will be created by the integration

Example Configuration

Basis Technologies Integrations (Direct) - GitLab_en

Page 24 of 48

4.2.3.8. /BTI/TE_TVARV
Clone or pull the SAP GitLab Repository to the SAP application server and configure the file path(the file
containing peer review information to be pushed in gitlab repo) in table /BTI/TE_TVARV with variant
variable TE_GIT_FILE

The batch template attached for windows/Linux that contains commands to call git to push file into gitlab
repository has to be uploaded into SAP application server based on the OS of machine after updating
the drive information in the template.

Two separate scripts will be used to switch branch and commit, identified by 2 keys in /BTI/TE_TVARV,
These refer to OS commands defined with transaction SM69.Syntax is as follows:

Z_GIT_PUSH
Z_GIT_SWITCH

Sample scripts will be provided separately.

The batch file in the directory can be run by an external commands created in transaction SM69.

Basis Technologies Integrations (Direct) - GitLab_en

Page 25 of 48

Example Configuration

Basis Technologies Integrations (Direct) - GitLab_en

Page 26 of 48

4.2.3.9. /BTI/TE_RF
Number range for object /BTI/TE_RF needs to be setup in the TE Domain Controller via SNRO for the
Integration Framework to operate.

Example configuration

Basis Technologies Integrations (Direct) - GitLab_en

Page 27 of 48

4.2.3.10. /BTI/TE_INT_USR
Within the ActiveControl integration framework, it is possible to set up ‘Notification Users’ per external
system that can be notified when an integration message has gone into an error status.

This is run through the Email Notification Engine and the table that needs to be maintained is ‘/BTI/
TE_INT_USR’.

Example configuration

%(color-gray)Figure: Username of desired recipient of Integration notifications should be maintained in
/BTI/TE_INT_USR

Basis Technologies Integrations (Direct) - GitLab_en

Page 28 of 48

4.2.4. SAP Programs
Basis Technologies Integrations (Direct) - GitLab_en

Page 29 of 48

4.2.4.1. /BTI/TE_INTEG_TRIGGER
The /BTI/TE_INTEG_TRIGGER trigger program is used as part of the Gitlab Integration to select the
appropriate ActiveControl records to push out to Gitlab.

This program would be scheduled as a variant to run every 5-10 minutes, to push the latest payload out
to Gitlab.

Example Variant

Basis Technologies Integrations (Direct) - GitLab_en

Page 30 of 48

4.2.4.2. /BTI/TE_INTEG_SEND
The /BTI/TE_INTEG_SEND send program is used to pick up the mapped transactions and send them
out to the configured external systems. It retrieves the required records and then uses the configured
send methods for each particular integration scenario to actually push the data out to the receiving
systems.

Example variant

Basis Technologies Integrations (Direct) - GitLab_en

Page 31 of 48

4.2.4.3. /BTI/TE_RNOTIFICATION_ENGINE
ActiveControl includes a standard Notification Engine to notify the appropriate stakeholders at the
appropriate time in the workflow.

These notifications are switched on/off via program /BTI/TE_RNOTIFICATION_ENGINE in the Domain
Controller, and scheduled to run as a variant every 5-10 minutes.

As part of the Gitlab integration, the ‘Failed Integration Submission’ notification type should be switched
on. If this is done, then all users configured in /BTI/TE_INT_USR will receive notifications of any failed
integrations. (outbound integration only)

Basis Technologies Integrations (Direct) - GitLab_en

Page 32 of 48

Figure: Standard Notification Engine integration type is used to alert defined users of any Integration
errors during the Outbound integration

Basis Technologies Integrations (Direct) - GitLab_en

Page 33 of 48

4.2.5. Integration Setup (GitLab)
The ActiveControl / GitLab integration outbound integration works by ActiveControl calling GitLab

Customer GitLab Administrators would need to setup GitLab for the purpose of the Integration with
ActiveControl. This would be used to as part of the ActiveControl outbound integration, to perform the
relevant GitLab-side action ie triggering automated testing scripts within tools such as Selenium or
Tosca. They would also be used to trigger events as part of Inbound Integration back to ActiveControl

The likely events as part of outbound and inbound integration are as follows:

Number Event

1
ActiveControl locking the Import Queue (to prevent the import of subsequent transports whilst the
Integration is in progress.

2 Passing contents of the Test Queue / Required Tests from ActiveControl to GitLab

3 GitLab initiating the required Tests within the automated testing tool.

4
GitLab receiving PASS or FAIL test result information from the automated testing tool, and
sending this back to ActiveControl.

5 ActiveControl unlocking the Import Queue at the end of Inbound integration.

6
Uploading Test results to the Business Task, and moving the associated Transport Forms
forward to the next location in the workflow.

Basis Technologies Integrations (Direct) - GitLab_en

Page 34 of 48

4.2.5.1. GitLab User
A system user is required in GitLab to support the integration

The nature of this User will depend on the requirements and final Integration solution.

Basis Technologies Integrations (Direct) - GitLab_en

Page 35 of 48

4.3. Inbound Integration
When the automated testing cycle completes, Gitlab will need to report back to ActiveControl whether
the testing was a Pass or Fail.

Typically the following activities will happen as part of Gitlab automated testing Inbound integration:

1. GitLab pipeline gathers a single pass/fail result from all of the Tosca Execution Lists from all of the
transport forms.

2. GitLab pipeline sends HTTP Post call to the ActiveControl server.

a. https://docs.basistechnologies.com/integration-administration-guides/0.7/en/topic/save-business-task-
result

b. queryresultsfile – see information below

c. attachement – this can be a .url file that contains the url to the detailed Tosca results described in step 2.

queryresultsfile example

Following screenshot shows an example of the queryresultsfile form data parameter. This can be string
data and not an actual file.

– can be found in /BTI/TE_TARG table in the ActiveControl server.
– X is the standard true value in SAP. If there was a failure, leave blank.
– The overall status message. This is saved in the Business Task Test Result.

Basis Technologies Integrations (Direct) - GitLab_en

Page 36 of 48

4.4. ActiveControl HTTP API
Basis Technologies Integrations (Direct) - GitLab_en

Page 37 of 48

4.4.1. Get Queue Contents
HTTP GET

Example URL:
http://te.basistechnologies.net:8000/bti/
te_web_services?action=QUEUE_CONTENTS&TARGETID=168&LOCATION=T

Authentication – Basic (ActiveControl user credentials)

Request Parameters
Name Value Description

action QUEUE_CONTENTS The get queue content action

TARGETID 168 Look in the /BTI/TE_TARG table for the target id. See example below.

LOCATION T

The queue location in the target system.
I – Inbox
Q – Import Queue
T – Test queue
O – Outbox

Basis Technologies Integrations (Direct) - GitLab_en

Page 38 of 48

Response
XML Payload

Basis Technologies Integrations (Direct) - GitLab_en

Page 39 of 48

Basis Technologies Integrations (Direct) - GitLab_en

Page 40 of 48

Postman Example

Basis Technologies Integrations (Direct) - GitLab_en

Page 41 of 48

Basis Technologies Integrations (Direct) - GitLab_en

Page 42 of 48

4.4.2. Lock Queue
HTTP GET

Example URL:
http://te.basistechnologies.net:8000/bti/te_web_services?action=LOCK_TARGET&TARGETID=168

Authentication – Basic (ActiveControl user credentials)

Note – This locks only the import queue for the target system.

Request Parameters
Name Value Description

action LOCK_TARGET Locks the target system import queue.

TARGETID 168 Look in the /BTI/TE_TARG table for the target id.

Response

Basis Technologies Integrations (Direct) - GitLab_en

Page 43 of 48

Postman Example

Basis Technologies Integrations (Direct) - GitLab_en

Page 44 of 48

4.4.3. Unlock Queue
HTTP GET

Example URL:
http://te.basistechnologies.net:8000/bti/te_web_services?action=UNLOCK_TARGET&TARGETID=168

Authentication – Basic (ActiveControl user credentials)

Note – This unlocks only the import queue for the target system.

Request Parameters
Name Value Description

action UNLOCK_TARGET Unlocks the target system import queue.

TARGETID 168 Look in the /BTI/TE_TARG table for the target id.

Response

Note – the BTIEM_MESSAGE value ‘Target Unocked’ is misspelled. A defect has been submitted to fix
the spelling in a future release.

Basis Technologies Integrations (Direct) - GitLab_en

Page 45 of 48

Postman Example

Basis Technologies Integrations (Direct) - GitLab_en

Page 46 of 48

4.5. Error Logging
Standard SAP logging is possible as part of the Gitlab integration. The prerequisite for this is that the
subobject of /BTI/TE is created via transaction SLG0 in the Domain Controller.

Example configuration

Once the above has been done, tTransaction SLG1 can be used within ActiveControl Domain Controller
system to view the integration Logging output as part of the Outbound integration.

Nothing is logged in SLG1 as part of Inbound integration.

For INTEGRATION_NN, the NN should be the EXTSYST_NO as defined in table /BTI/
TE_INT_SYST.*

Basis Technologies Integrations (Direct) - GitLab_en

Page 47 of 48

5. Further Information
As detailed earlier in this Integration Guide, the ActiveControl / Gitlab integration is not an out-of-the-box
‘plug it and play’ Integration in the sense of many of the more established and mature ActiveControl
integrations such as JIRA and ServiceNow. It should be anticipated that some chargeable consulting –
and possible also development – services will be required to setup the integration, both on the Basis
Technologies side and also Customer technology team.

If you are interested in finding out more about the ActiveControl / GitLab integration capability to trigger
automated testing (or indeed any other purpose) – please reach out to your Basis Technologies Acount
Manager.

Basis Technologies Integrations (Direct) - GitLab_en

Page 48 of 48

	Table of Contents
	1. Document Purpose
	Introduction
	Gitlab Integration as part of a CI/CD pipeline
	Gitlab integration to trigger Automated Testing

	Document Audience

	2. ActiveControl Integration Framework
	ActiveControl Domain Controller
	The Integration Framework Architecture

	3. GitLab Integration
	Example GitLab integration
	Key Points of a bi-directional GitLab integration
	Outbound Integration
	Inbound Integration

	4. Integration Components
	4.1. Pre-Requisites
	1. Install GIT
	2. Setup Remote Repository
	3. GitLab pipeline
	4. Clone Remote Repository
	6. Test Connections

	4.2. Outbound Integration
	4.2.1. SAP User
	4.2.2. ActiveControl General Configuration
	4.2.2.1. Custom Fields
	4.2.2.2. Import Options
	4.2.3. SAP configuration tables
	4.2.3.1. /BTI/TE_INT_SYST
	Example configuration

	4.2.3.2. /BTI/TE_INT_CLAS
	Example configuration

	4.2.3.3. /BTI/TE_INT_PC
	Example configuration

	4.2.3.4. /BTI/TE_INT_PROC
	Example configuration

	4.2.3.5. /BTI/TE_INT_MAPP
	Example Configuration

	4.2.3.6. /BTI/TE_INT_MAPX
	4.2.3.7. /BTI/TE_GITLABBR
	Example Configuration

	4.2.3.8. /BTI/TE_TVARV
	Example Configuration

	4.2.3.9. /BTI/TE_RF
	Example configuration

	4.2.3.10. /BTI/TE_INT_USR
	Example configuration

	4.2.4. SAP Programs
	4.2.4.1. /BTI/TE_INTEG_TRIGGER
	Example Variant

	4.2.4.2. /BTI/TE_INTEG_SEND
	Example variant

	4.2.4.3. /BTI/TE_RNOTIFICATION_ENGINE
	4.2.5. Integration Setup (GitLab)
	4.2.5.1. GitLab User
	4.3. Inbound Integration
	queryresultsfile example

	4.4. ActiveControl HTTP API
	4.4.1. Get Queue Contents
	Request Parameters
	Response
	Postman Example

	4.4.2. Lock Queue
	Request Parameters
	Response
	Postman Example

	4.4.3. Unlock Queue
	Request Parameters
	Response
	Postman Example

	4.5. Error Logging
	Example configuration

	5. Further Information

